

 Unsupervised Machine Learning

Table of Contents

	K-means Clustering

	Anomaly Detection

	Recommender Systems

	Content-Based Filtering

	Implementing Recommender Systems

	Principal Component Analysis (PCA)

	Reinforcement Learning

	RL: State-action value function

	RL: Continuous State Spaces

K-means Clustering

Welcome! In this section, we’ll explore our first unsupervised learning algorithm: K-means clustering. Unlike supervised learning, where we have labeled data (both inputs x and outputs y), unsupervised learning deals with unlabeled data (just x). The goal is to discover interesting structures within the data, and clustering is a key technique for finding groups of similar data points.

Clustering has many real-world applications, from grouping news articles and segmenting customers to analyzing DNA data and astronomical observations.

The K-means Algorithm

The most popular clustering algorithm is K-means. It’s an iterative algorithm that groups data into a specified number of clusters, K.

The algorithm follows two main steps repeatedly until it converges (i.e., no more changes occur):

	Assign points to cluster centroids 2. Move cluster centroids Let’s break down the process.

Initialization

The first step is to randomly initialize K cluster centroids. A cluster centroid is the center of a cluster. A common method is to randomly pick K training examples from the dataset and set the initial centroid locations to be the locations of these examples.

	We denote the cluster centroids as μ1,μ2,...,μK\mu_1, \mu_2, ..., \mu_K.

	Each centroid, μk\mu_k, is a vector with the same dimension as the training examples.

The Two Iterative Steps

Once initialized, K-means repeats the following two steps:

1. Assign Points to Cluster Centroids For every training example, we assign it to the closest cluster centroid.

	We use c(i)c^{(i)} to denote the index of the cluster (from 1 to K) to which example x(i)x^{(i)} is assigned.

	To find the closest centroid for an example x(i)x^{(i)}, we find the value of k that minimizes the distance (or squared distance) between x(i)x^{(i)} and μ_k\mu_k.

2. Move Cluster Centroids Next, we update the location of each cluster centroid, μ_k\mu_k, by taking the average (or mean) of all the points assigned to that cluster.

	For example, to update μ1\mu_1, we find all the points assigned to cluster 1 and compute their mean location. This new mean becomes the new position for μ1\mu_1.

	If a cluster has zero points assigned to it, the common practice is to eliminate that cluster. An alternative is to randomly re-initialize its centroid.

The algorithm repeats these two steps until the cluster assignments and centroid locations no longer change, at which point we say K-means has converged.

The K-means Cost Function (Distortion)

The K-means algorithm is actually trying to optimize a cost function, also known in the literature as the distortion function. This function measures the average squared distance between each training example and its assigned cluster centroid.

The cost function, JJ, is defined as:

J(c(1),...,c(m),μ1,...,μK)=1m∑i=1m||x(i)−μc(i)||2J(c^{(1)},...,c^{(m)}, \mu_1,...,\mu_K) = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2

Variable Definitions:

	JJ: The cost or distortion function.

	mm: The total number of training examples.

	x(i)x^{(i)}: The ii-th training example.

	c(i)c^{(i)}: The index of the cluster to which example x(i)x^{(i)} is assigned.

	μk\mu_k: The location of the kk-th cluster centroid.

	μc(i)\mu_{c^{(i)}}: The cluster centroid of the cluster to which example x(i)x^{(i)} has been assigned.

	||x(i)−μc(i)||2||x^{(i)} - \mu_{c^{(i)}}||^2: The squared distance between a training example x(i)x^{(i)} and its assigned centroid μc(i)\mu_{c^{(i)}}.

Each step of K-means is designed to minimize this cost function JJ.

	The “Assign Points” step minimizes JJ by updating the assignments c(1),...,c(m)c^{(1)}, ..., c^{(m)} while keeping the centroids μ_1,...,μ_K\mu_1, ..., \mu_K fixed.

	The “Move Centroids” step minimizes JJ by updating the centroids μ_1,...,μ_K\mu_1, ..., \mu_K while keeping the assignments c(1),...,c(m)c^{(1)}, ..., c^{(m)} fixed.

Because every step reduces the cost function, K-means is guaranteed to converge.

Handling Local Optima

K-means can get stuck in different local optima depending on the random initialization. A poor initialization can lead to a less-than-ideal clustering result.

To get a better result, you can run the K-means algorithm multiple times (e.g., 50 to 1000 times), each with a different random initialization. After each run, compute the cost function JJ. Finally, pick the set of clusters that resulted in the lowest cost. This method gives you a much better chance of finding the best clustering for your data.

Choosing the Number of Clusters (K)

One of the challenges with K-means is that the algorithm requires you to specify the number of clusters, K, as an input. For many datasets, the “right” value for K is ambiguous, and different people might see a different number of clusters.

The Elbow Method

One technique to help choose K is the Elbow Method. This involves running K-means for a range of K values and plotting the cost function (distortion) JJ for each K.

	As K increases, the distortion JJ will always decrease.

	If the plot shows a clear “elbow”—a point where the cost function’s decrease slows down significantly—that point can be a good choice for K.

	However, many real-world plots decrease smoothly without a clear elbow, making this method ambiguous in practice.

	Important: You should not choose K simply by finding the minimum possible cost function value, as this will almost always lead to choosing the largest possible K.

Evaluating K based on a Downstream Purpose

A more practical and widely recommended approach is to evaluate K based on how well the resulting clusters serve a later or downstream purpose.

	Example: T-shirt Sizing: Imagine you’re creating t-shirts and have data on people’s height and weight. Should you offer 3 sizes (S, M, L) or 5 sizes (XS, S, M, L, XL)?.

	Running pi(text{State 4})-means with K=3 and K=5 will give you two different ways to group your potential customers.

	The choice between 3 and 5 clusters isn’t about finding the “right” number of clusters in the data, but about a business decision. You must consider the trade-off: 5 sizes will likely fit more people better, but will also cost more to manufacture and stock than 3 sizes. You would evaluate the different values of K based on what makes the most sense for your business goal.

Anomaly Detection

Welcome! This summary covers the fundamentals of anomaly detection, a powerful unsupervised learning algorithm used to identify unusual events or data points. We’ll explore the core concepts, from the underlying Gaussian distribution to building and evaluating a complete anomaly detection system.

What is Anomaly Detection?

Anomaly detection is an unsupervised learning algorithm that analyzes an unlabeled dataset of normal events to learn how to flag unusual or anomalous events.

Core Idea: Density Estimation

The most common method for anomaly detection is through a technique called density estimation. The process works as follows:

	Build a Model: Given a training set of m examples (x(1)x^{(1)} through x(m)x^{(m)}), we build a model, p(x)p(x), that estimates the probability of observing a given example. This model learns which data points are likely (high probability) and which are unlikely (low probability).

	Evaluate a New Example: When we get a new test example, x_testx_{test}, we compute its probability, p(x_test)p(x_{test}).

	Flag Anomalies: We select a small threshold value, called epsilon (ϵ\epsilon). If the probability of the new example is less than this threshold (p(x_testp(x_{test}) < ϵ\epsilon), we flag it as an anomaly. Otherwise, we consider it normal (p(x_test)≥ϵp(x_{test}) \geq \epsilon).

Applications of Anomaly Detection

Anomaly detection is widely used in various practical applications:

	Fraud Detection: Identifying unusual user activities on a website to flag potentially fraudulent accounts or transactions.

	Manufacturing: Checking newly manufactured items, like aircraft engines or smartphones, for defects.

	Monitoring Data Centers: Detecting computers that are behaving strangely, which might indicate a hardware failure or a security breach.

The Gaussian (Normal) Distribution

To build our model p(x)p(x), we use the Gaussian distribution, also known as the normal distribution or the bell-shaped curve.

If a feature xx follows a Gaussian distribution, its probability is determined by two parameters:

	Mean (μ\mu): The center or middle of the curve.

	Variance (σ2\sigma^2): A parameter that controls the width of the curve. σ\sigma is called the standard deviation.

The formula for the Gaussian distribution is:

p(x)=12πσe−(x−μ)22σ2p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}

Where:

	p(x)p(x): The probability of observing the value xx.

	μ\mu: The mean of the distribution.

	σ2\sigma^2: The variance of the distribution (σ\sigma is the standard deviation).

	π\pi: The mathematical constant pi (approximately 3.14159).

Estimating Parameters from Data

Given a training set of mm examples (x(1),x(2),...,x(m)x^{(1)}, x^{(2)}, ..., x^{(m)}), we can estimate the mean and variance directly from the data.

The formula for estimating the mean (μ\mu) is the average of the examples:

μ=1m∑i=1mx(i)\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}

The formula for estimating the variance (σ2\sigma^2) is the average of the squared differences from the mean:

σ2=1m∑i=1m(x(i)−μ)2\sigma^2 = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu)^2

Note: Some statisticians may use 1m−1\frac{1}{m-1} instead of 1m\frac{1}{m} for the variance calculation, but for practical purposes in machine learning, the difference is minimal.

The Anomaly Detection Algorithm

Now, let’s combine these ideas to build the complete algorithm for a dataset with nn features.

The Model

For a feature vector xx with nn features (x_1,x_2,...,x_nx_1, x_2, ..., x_n), we model the probability p(x)p(x) by multiplying the probabilities of each individual feature. This assumes the features are statistically independent, though the algorithm often works well even if they are not.

The model for p(x)p(x) is:

p(x)=p(x1;μ1,σ12)×p(x2;μ2,σ22)×⋯×p(xn;μn,σn2)p(x) = p(x_1; \mu_1, \sigma_1^2) \times p(x_2; \mu_2, \sigma_2^2) \times \cdots \times p(x_n; \mu_n, \sigma_n^2)

This can be written more compactly as:

p(x)=∏j=1np(xj;μj,σj2)p(x) = \prod_{j=1}^{n} p(x_j; \mu_j, \sigma_j^2)

The ∏\prod symbol represents the product of a sequence of terms.

For each feature jj, we calculate its own mean μ_j\mu_j and variance σ_j2\sigma_j^2.

Algorithm Steps

Here is the step-by-step process for building an anomaly detection system:

	Choose Features: Select nn features (x_jx_j) that you believe might be indicative of anomalous examples.

	Fit Parameters: For each feature j=1,...,nj = 1, ..., n, calculate the mean μ_j\mu_j and variance σ_j2\sigma_j^2 from your training set using the formulas:

μj=1m∑i=1mxj(i)\mu_j = \frac{1}{m} \sum_{i=1}^{m} x_j^{(i)}

σj2=1m∑i=1m(xj(i)−μj)2\sigma_j^2 = \frac{1}{m} \sum_{i=1}^{m} (x_j^{(i)} - \mu_j)^2

	Calculate Probability: Given a new example xx, compute p(x)p(x) by plugging the calculated parameters into the full probability formula:

p(x)=∏j=1n12πσje−(xj−μj)22σj2p(x) = \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}\sigma_j} e^{-\frac{(x_j - \mu_j)^2}{2\sigma_j^2}}

	Flag Anomaly: If p(x)p(x) is less than your chosen threshold ϵ\epsilon, flag the example as an anomaly.

Developing and Evaluating an Anomaly Detection System

To make good decisions while building your system (e.g., choosing features or setting ϵ\epsilon), it’s crucial to have a way to evaluate its performance. This is sometimes called real number evaluation.

Using Labeled Data for Evaluation

Although the core algorithm is unsupervised, it’s highly recommended to have a small amount of labeled data for evaluation.

	Training Set: A large set of normal (y=0y = 0) examples. The algorithm learns p(x)p(x) from this set.

	Cross Validation (CV) Set / Test Set: A smaller set that includes some known anomalous examples (y=1y = 1) and normal examples (y=0y = 0).

You can split your data like this:

	Training set: A large number of good examples (e.g., 6,000 normal aircraft engines).

	Cross-validation set: A smaller number of good examples plus a few known anomalies (e.g., 2,000 normal engines and 10 anomalous engines).

	Test set: A separate set with good examples and known anomalies (e.g., 2,000 normal and 10 anomalous engines).

Evaluation Process

	Fit the model p(x)p(x) on the unlabeled training set.

	Use the cross-validation set to tune the parameter ϵ\epsilon. Try different values of ϵ\epsilon and see which one best identifies the anomalies (y=1y = 1) without incorrectly flagging too many normal examples (y=0y = 0).

	Because anomaly detection datasets are often highly skewed (many more normal than anomalous examples), standard accuracy is not a good metric. Instead, consider using metrics like true positive/false positive rates, precision/recall, or the F1 score.

	Finally, evaluate the performance of your tuned model on the test set to get a fair estimate of how it will perform on new, unseen data.

Classification Metrics (for Supervised Learning)

These metrics help you understand how well your classification model is performing.

Confusion Matrix

A confusion matrix is a table that summarizes a model’s prediction performance by showing the counts of correct and incorrect predictions for each class.

For a two-class problem (e.g., Positive vs. Negative), it looks like this:

	
	Predicted: Positive
	Predicted: Negative

	Actual: Positive
	True Positive (TP)
	False Negative (FN)

	Actual: Negative
	False Positive (FP)
	True Negative (TN)

where,

	TP: You predicted positive, and it was correct.

	FN: You predicted negative, but it was actually positive.

	FP: You predicted positive, but it was actually negative.

	TN: You predicted negative, and it was correct.

True Positive / False Positive Rates

	True Positive Rate (TPR): Also called Recall or Sensitivity. It answers: Of all the actual positive cases, what percentage did the model correctly identify? TPR=TPTP+FN\text{TPR} = \frac{\text{TP}}{\text{TP} + \text{FN}}

	False Positive Rate (FPR): It answers: Of all the actual negative cases, what percentage did the model incorrectly label as positive? FPR=FPFP+TN\text{FPR} = \frac{\text{FP}}{\text{FP} + \text{TN}}

Precision / Recall

These two metrics provide a more nuanced view of a model’s performance, especially when classes are imbalanced.

	Precision: Measures the accuracy of the positive predictions. It answers: When the model predicted positive, what percentage of the time was it correct? Precision=TPTP+FP\text{Precision} = \frac{\text{TP}}{\text{TP} + \text{FP}}

	Recall: Measures the model’s ability to find all positive instances. It is the same as the True Positive Rate. Recall=TPTP+FN\text{Recall} = \frac{\text{TP}}{\text{TP} + \text{FN}}

There is often a trade-off between precision and recall. For example, being more aggressive in predicting “positive” will increase recall but may lower precision.

F1 Score

The F1 Score is the harmonic mean of precision and recall. It provides a single score that balances both metrics, making it useful when you need a compromise between finding all positives (recall) and being sure about your positive predictions (precision).

F1 Score=2×Precision×RecallPrecision+Recall\text{F1 Score} = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}

A score of 1.0 is a perfect balance of precision and recall.

Anomaly Detection vs. Supervised Learning

When you have some labeled data, you might wonder whether to use anomaly detection or a supervised learning algorithm.

	Use Anomaly Detection When…
	Use Supervised Learning When…

	You have a very small number of positive (y=1y = 1) examples (e.g., 0-20).
	You have a large enough number of both positive and negative examples.

	There are many different types of anomalies.
	Future positive examples are likely to be similar to the ones in the training set.

	You need to detect brand new types of anomalies never seen before.
	You have enough positive examples for an algorithm to learn what they look like.

	Example: Fraud detection, manufacturing defects, data center monitoring.
	Example: Email spam classification, weather prediction, disease classification.

Tips for Choosing and Tuning Features

The choice of features is critical for the performance of an anomaly detection algorithm.

Make Features Gaussian

The algorithm assumes features are Gaussian. If a feature’s distribution is highly non-Gaussian (skewed), you should try to transform it.

	Plot a histogram of the feature’s values (e.g., using plt.hist() in Python).

	If it doesn’t look like a bell-shaped curve, try applying transformations like:

	log⁡(x)\log(x) or log⁡(x+c)\log(x + c)

	x\sqrt{x}

	x1/3x^{1/3}

	Choose the transformation that makes the data look the most Gaussian.

	Remember to apply the same transformation to the training, cross-validation, and test sets.

Error Analysis and Creating New Features

If your algorithm fails to flag an anomaly from your cross-validation set (i.e., p(x)p(x) is large for a known anomaly), perform an error analysis.

	Examine the misclassified example. What about it makes it anomalous, even if the algorithm missed it?

	This analysis can inspire the creation of new features. For example, in data center monitoring, you might find that neither CPU load nor network traffic alone are anomalous, but their ratio is.

	You can create new features by combining existing ones. For instance:

new_feature = CPU_load / network_traffic

The goal is to create a feature that takes on an unusually large or small value for the anomalies the algorithm is currently missing.

Chapter Summary: Recommender Systems

Welcome! This week, we’ll explore recommender systems, one of the most impactful applications of machine learning in the commercial world. From suggesting movies on Netflix to products on Amazon, these systems are a major driver of user engagement and sales.

We’ll build our understanding using a movie rating example, where our goal is to predict how a user might rate a movie they haven’t seen yet.

1. Defining the Problem & Notation

Imagine a dataset where a group of users have rated several movies on a scale of 0 to 5 stars. Many entries are blank because users haven’t rated every movie. Our job is to fill in these blanks with predicted ratings.

Here’s the notation we’ll use:

	n_un_u: The total number of users.

	n_mn_m: The total number of movies (or items).

	y(i,j)y^{(i,j)}: The rating user jj gave to movie ii.

	r(i,j)r(i,j): A binary value that is 1 if user jj has rated movie ii, and 0 otherwise. This helps us know which ratings actually exist in our data.

2. Content-Based Filtering: Predicting Ratings with Known Features

Let’s start with a special case: what if we already have a set of features for each movie? For example, for each movie, we might know how much of a “romance” movie it is (x_1x_1) and how much of an “action” movie it is (x_2x_2).

For each user jj, we can learn a set of parameters, w(j)w^{(j)} and b(j)b^{(j)}, and build a personalized prediction model that works a lot like linear regression.

The Prediction Model

The predicted rating of user jj for movie ii is calculated using their personal parameters and the movie’s features:

prediction=w(j)⋅x(i)+b(j)\text{prediction} = w^{(j)} \cdot x^{(i)} + b^{(j)}

	x(i)x^{(i)} is the feature vector for movie ii.

	w(j)w^{(j)} and b(j)b^{(j)} are the parameters learned specifically for user jj.

The Cost Function

To learn the best parameters for each user, we need to define a cost function. We’ll use a mean squared error approach, adding a regularization term to prevent overfitting.

The goal is to minimize the difference between our predicted ratings and the actual ratings the user has given. To learn the parameters for all users simultaneously, we sum the individual cost functions for each user.

The overall cost function to learn all parameters (w(1),b(1),...,w(n_u),b(n_u)w^{(1)}, b^{(1)}, ..., w^{(n_u)}, b^{(n_u)}) is:

J(w,b)=∑j=1nu[12∑i:r(i,j)=1(w(j)⋅x(i)+b(j)−y(i,j))2+λ2∑k=1n(wk(j))2]J(w,b) = \sum_{j=1}^{n_u} \left[\frac{1}{2} \sum_{i:r(i,j)=1} (w^{(j)} \cdot x^{(i)} + b^{(j)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{k=1}^{n} (w_k^{(j)})^2 \right]

	The inner sum ∑_i:r(i,j)=1\sum_{i:r(i,j)=1} calculates the squared error only for movies that user jj has actually rated.

	The term λ2∑_k=1n(w_k(j))2\frac{\lambda}{2} \sum_{k=1}^{n} (w_k^{(j)})^2 is the regularization term that helps prevent the parameters ww from becoming too large.

	By minimizing this function using an algorithm like gradient descent, we can find a good set of parameters for every user.

3. Collaborative Filtering: Learning Features from Ratings

But what if we don’t have the features for the movies? This is where the magic of collaborative filtering comes in. It turns out we can learn the features from the data itself.

The core idea is that multiple users rating the same movie gives us clues about that movie’s features. If we have the parameters ww and bb for all users, we can deduce the features xx for a movie that would make the predictions match the known ratings.

The Unified Cost Function

Instead of a two-step process, we can combine the cost functions for learning user parameters (w,bw,b) and for learning movie features (xx) into a single, unified cost function. We then treat ww, bb, and xx as parameters that the algorithm needs to learn simultaneously.

The overall cost function for collaborative filtering is:

J(w,b,x)=12∑(i,j):r(i,j)=1(w(j)⋅x(i)+b(j)−y(i,j))2+λ2∑j=1nu∑k=1n(wk(j))2+λ2∑i=1nm∑k=1n(xk(i))2J(w,b,x) = \frac{1}{2} \sum_{(i,j):r(i,j)=1} (w^{(j)} \cdot x^{(i)} + b^{(j)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (w_k^{(j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^{n} (x_k^{(i)})^2

	The first term is the familiar squared error, but now the sum is over all pairs (i,j)(i,j) where a rating exists.

	The second term is the regularization for all user parameters, w(j)w^{(j)}.

	The third term is the new regularization for all the movie features, x(i)x^{(i)}.

Optimization with Gradient Descent

To minimize this complex cost function, we use gradient descent. We simultaneously update all the parameters—ww, bb, and now xx as well—by taking steps in the direction of the negative gradient.

The update rules look like this:

	w_k(j):=w_k(j)−α∂∂w_k(j)J(w,b,x)w_k^{(j)} := w_k^{(j)} - \alpha \frac{\partial}{\partial w_k^{(j)}} J(w,b,x)

	b(j):=b(j)−α∂∂b(j)J(w,b,x)b^{(j)} := b^{(j)} - \alpha \frac{\partial}{\partial b^{(j)}} J(w,b,x)

	x_k(i):=x_k(i)−α∂∂x_k(i)J(w,b,x)x_k^{(i)} := x_k^{(i)} - \alpha \frac{\partial}{\partial x_k^{(i)}} J(w,b,x)

By performing these updates repeatedly, the algorithm learns both the best parameters for each user and the best features for each movie, all from the rating data itself. This is called collaborative filtering because the users are “collaborating” (by providing ratings) to help the system learn features and make better predictions for everyone.

4. Generalizing to Binary Labels

Many real-world systems don’t use 0-5 star ratings; they use binary labels (e.g., liked/disliked, purchased/not purchased, clicked/not clicked). We can adapt our algorithm for this scenario in a way that is very similar to how we generalize from linear regression to logistic regression.

The Logistic Prediction Model

Instead of predicting a rating directly, we now predict the probability that a user will “like” an item (y=1y=1). We do this by feeding our linear model into the logistic (or sigmoid) function, g(z)g(z).

P(y(i,j)=1)=g(w(j)⋅x(i)+b(j))whereg(z)=11+e−zP(y^{(i,j)}=1) = g(w^{(j)} \cdot x^{(i)} + b^{(j)}) \quad \text{where} \quad g(z) = \frac{1}{1+e^{-z}}

The Binary Cross-Entropy Cost Function

With binary labels, the squared error cost function is no longer appropriate. Instead, we use the standard loss function for logistic regression, sometimes called the binary cross-entropy loss.

For a single prediction f(x)f(x) (which is our probability from the logistic model) and a true label yy, the loss is:

loss(f(x),y)=−ylog⁡f(x)−(1−y)log⁡(1−f(x))\text{loss}(f(x), y) = -y \log f(x) - (1-y) \log(1 - f(x))

We simply replace the squared error term in our main collaborative filtering cost function with this new loss function. The algorithm then proceeds as before: minimizing this new cost function with respect to ww, bb, and xx to learn the parameters. This powerful generalization allows us to apply collaborative filtering to a much wider range of applications.

Chapter Summary: Content-Based Filtering

Welcome, everyone! Today, we’re diving into a powerful and widely-used type of recommender system: content-based filtering. We’ll explore how it works, how to build a state-of-the-art version using deep learning, and the critical ethical questions you must consider when deploying such a system.

What is Content-Based Filtering? 🤔

At its heart, content-based filtering is about matching. Unlike collaborative filtering, which recommends items based on what similar users like, content-based filtering works by matching the features of a user with the features of an item.

Think of it like a skilled matchmaker. The matchmaker needs to know about you to make a good recommendation. Our system does the same thing, but with data.

	User Features (x_ujx_u^j): This is a vector of numbers describing user j. It could include demographic information like age and country, or behavioral data like the genres of movies they’ve rated highly in the past.

	Item Features (x_mix_m^i): This is a vector describing item i. For a movie, this could be its release year, genre, or critic reviews.

The core challenge is to take these features and figure out if a specific user and a specific item are a good match.

The Deep Learning Architecture: A Tale of Two Networks 🧠

To solve this matching problem, we use a clever deep learning architecture composed of two specialized neural networks.

	The User Network: This neural network takes the raw feature vector for a user, x_ujx_u^j, as its input. Through a few hidden layers, it distills this information down to a compact, meaningful vector we call v_ujv_u^j. This vector, perhaps 32 numbers long, is the network’s learned representation of the user’s tastes and preferences.

	The Movie (Item) Network: Similarly, a second network takes the raw feature vector for a movie, x_mix_m^i, as its input. It also processes this through its own set of layers to produce a vector v_miv_m^i of the exact same size as v_ujv_u^j. This vector is the network’s learned representation of the movie’s essential characteristics.

The Final Prediction: The Dot Product ✨

Once we have these two vectors—v_ujv_u^j (what the user likes) and v_miv_m^i (what the movie is like)—how do we predict the rating? We simply take their dot product. The result of v_uj⋅v_miv_u^j \cdot v_m^i is a single number that serves as our predicted rating. If the learned features in the vectors align (e.g., the “romance” component is high in both), the dot product will be high, indicating a good match. For binary outcomes (like/dislike), a sigmoid function can be applied to this dot product.

How Does It Learn? The Cost Function Explained 📈

The networks learn to create these meaningful vectors by trying to minimize a cost function. The guiding principle is: “Make your predictions as close to reality as possible.” We use the Mean Squared Error (MSE) cost function. Here’s the logic:

	Make a Prediction: For a user j and movie i from our training data, we calculate the predicted rating, v_uj⋅v_miv_u^j \cdot v_m^i.

	Calculate the Error: We find the difference between the actual rating, y_ijy_{ij}, and our predicted rating.

	Square the Error: We square this difference to make all errors positive and to penalize larger errors more heavily.

	Find the Average (Mean): We sum the squared errors for every single user-item rating we have in our dataset. The training algorithm, like Gradient Descent, then tweaks all the parameters in both networks to make this total cost as small as possible.

The formal cost function, JJ, is written as: J=∑(i,j) s.t. r(i,j)=1((vuj⋅vmi)−yij)2J = \sum_{(i,j) \text{ s.t. } r(i,j)=1} \left((v_u^j \cdot v_m^i) - y_{ij} \right)^2

A key practical step that improves performance is to normalize the output vectors v_ujv_u^j and v_miv_m^i to have a length of one.

Scaling Up: The Retrieval and Ranking Strategy 🚀

In the real world, running our complex neural network for millions of items for every user in real-time is computationally impossible. The solution is a two-step process: Retrieval and Ranking.

	Retrieval: First, we use fast, simpler methods to generate a large list of a few hundred plausible candidates. This step is about casting a wide net and ensuring broad coverage. For example, we might retrieve movies similar to what the user has watched before or popular items in their favorite genres.

	Ranking: Now, we take this much smaller list and run our powerful deep learning model on it. We calculate a precise predicted score for each candidate and rank them from highest to lowest. Finally, we show the top-ranked items to the user.

This approach provides both fast and accurate results.

A Word on Ethics: The Power and Peril of Recommendations ⚖️

Recommender systems are incredibly powerful and profitable, but that power comes with significant ethical responsibilities. A system’s goal is not always aligned with the user’s best interests, and this can lead to harm.

Consider these problematic use cases:

	Maximizing Profit, Not Relevance: Many sites recommend products that will make them the most profit, not the ones that are most relevant or that the user is most likely to purchase.

	Amplifying Harmful Content: To maximize user engagement (and thus ad revenue), some platforms have inadvertently amplified conspiracy theories and toxic content because it is highly “engaging”.

	Exploiting the Vulnerable: An ad system designed to maximize revenue might promote exploitative businesses, like payday lenders, simply because they can afford to bid more for ads, creating a harmful feedback loop.

As builders of this technology, we must be proactive. Potential remedies include being transparent with users about recommendation criteria , actively filtering harmful content , and refusing to do business with exploitative entities. The goal is to build systems that you truly believe make society better off.

Chapter Summary: Implementing Recommender Systems

This chapter dives into the practical aspects of building and improving collaborative filtering recommender systems. We’ll explore a crucial data preprocessing step called mean normalization, learn how to use the model to find similar items, and walk through how to implement this all using TensorFlow.

Mean Normalization: A Simple Trick for Better Predictions 🚀

Have you ever wondered how a recommendation system handles a brand-new user who hasn’t rated anything yet? Without any data, the system might just predict they’ll rate every movie zero stars, which isn’t very helpful!. This is where mean normalization comes to the rescue.

The core idea is to adjust the ratings so that, for each item, the average of all its ratings is zero. This simple preprocessing step makes the algorithm run faster and, more importantly, helps it make much more reasonable predictions for new users.

How It Works:

	Calculate the Mean: First, for each movie, we calculate the average rating it has received from all users who have rated it. We can represent these average ratings in a vector, let’s call it μ\mu.

	Subtract the Mean: Next, we create a new, “normalized” set of ratings by subtracting the corresponding average rating (μi\mu_i) from each original rating (Y(i,j)Y^{(i,j)}). So, if a user rated a movie 5 stars and the movie’s average rating was 2.5, the new normalized rating is 2.5. If they rated another movie 0 stars with an average of 2.25, the new rating becomes -2.25.

	Train the Model: We then train our collaborative filtering algorithm using these new, normalized ratings to learn the parameters w(j)w^{(j)} and b(j)b^{(j)} for each user and the feature vectors x(i)x^{(i)} for each item.

	Make Predictions: When we want to predict a rating, the model calculates the expected score using the learned parameters: w(j)⋅x(i)+b(j)w^{(j)} \cdot x^{(i)} + b^{(j)}. However, since we subtracted the mean earlier, we need to add it back to get our final prediction. The complete prediction formula is:

Prediction=w(j)⋅x(i)+b(j)+μi
\text{Prediction} = w^{(j)} \cdot x^{(i)} + b^{(j)} + \mu_i

For a new user like Eve, who hasn’t rated any movies, the algorithm will likely learn her parameters w(5)w^{(5)} and b(5)b^{(5)} to be zero. With mean normalization, her predicted rating for a movie becomes its average rating (μi\mu_i), which is a much more sensible guess than zero.

Finding Similar Items and the Limits of Collaborative Filtering 🧐

One of the coolest things you can do with a trained collaborative filtering model is to find similar items. If a user is looking at a specific movie, how can we suggest others like it? The answer lies in the feature vectors (x(i)x^{(i)}) that the algorithm learns for each item.

Even though these learned features can be hard to interpret, they capture the essence of an item. Therefore, items with similar feature vectors are likely to be related.

To find items similar to a given item i, we look for items k whose feature vectors x(k)x^{(k)} are “close” to x(i)x^{(i)}. We measure this closeness using the squared distance between the vectors. The smaller the distance, the more similar the items.

The formula for the squared distance between the feature vectors of movie k and movie i is:

distance2(x(k),x(i))=∑l=1n(xl(k)−xl(i))2\text{distance}^2(x^{(k)}, x^{(i)}) = \sum_{l=1}^{n} (x_l^{(k)} - x_l^{(i)})^2

Limitations to Keep in Mind:

Collaborative filtering is powerful, but it has weaknesses. The most significant is the cold start problem.

	New Items: It’s difficult to recommend a brand-new movie that almost no one has rated yet.

	New Users: It’s also challenging to provide good recommendations to new users who have rated very few items. Mean normalization helps a lot with this, but it’s not a perfect solution.

Additionally, standard collaborative filtering can’t easily incorporate side information, such as a movie’s genre or a user’s age and location, which could improve recommendations.

Bringing It to Life with TensorFlow 🤖

So, how do you actually build this? While TensorFlow is famous for neural networks, it’s also excellent for other machine learning algorithms like collaborative filtering.

A key challenge in training these models is calculating the derivatives (or gradients) of the cost function, which is needed for optimization algorithms like gradient descent. This is where TensorFlow’s Automatic Differentiation (Auto-Diff) feature shines.

The Magic of tf.GradientTape:

Instead of manually calculating complex derivatives, you can use TensorFlow’s tf.GradientTape to do it automatically. Here’s the gist of how it works:

	Define the Cost: You write the code to compute the cost function, JJ.

	Record Operations: You wrap this calculation inside a with tf.GradientTape() as tape: block. TensorFlow “records” all the operations performed to calculate the cost, which is necessary for automatic differentiation.

	Compute Gradients: You then ask the tape to compute the gradients of the cost with respect to the parameters you want to optimize (like xx, ww, and bb).

	Optimize: Finally, you use an optimizer, like the powerful Adam optimizer, to apply these gradients and update your parameters.

This approach is necessary because the collaborative filtering cost function doesn’t fit neatly into standard TensorFlow layers like Dense. By defining the cost function ourselves and leveraging Auto-Diff, we can build and train custom models effectively.

Chapter Summary: Principal Component Analysis (PCA)

Welcome! In this section, we’ll explore Principal Component Analysis (PCA), a powerful unsupervised learning algorithm. PCA is widely used to take datasets with many features and reduce them to just a few, making them much easier to visualize and understand. Let’s dive into how it works and how you can apply it.

[image: PCA Explained]
PCA Explained

Basic idea is to fabricate a new feature (z) that uses x1 and x2 as the basis for price prediction etc. Here we are projecting x1 and x2 to a new axis z.

What is PCA?

PCA is a technique for dimensionality reduction. Imagine you have a dataset with 50 or even 1,000 features for each data point. It’s impossible to plot 50-dimensional data on a 2D screen! PCA helps by creating new features, called principal components, that summarize the original ones. This allows you to condense your data down to two or three dimensions so you can create 2D or 3D plots and see what’s going on.

PCA uses linear algebra to transform data into new features called principal components. It finds these by calculating eigenvectors (directions) and eigenvalues (importance) from the covariance matrix. PCA selects the top components with the highest eigenvalues and projects the data onto them simplify the dataset

For example, if you have data on various countries with 50 features each (like GDP, life expectancy, etc.), PCA can help you compress this information into two new features, say z_1z_1 and z_2z_2. You could then plot these new features to see how the countries relate to one another, perhaps discovering that z_1z_1 corresponds to the country’s overall size/economy and z_2z_2 to its per-person economic activity.

Eigenvectors and Eigenvalues Explained 📊

In data analysis, particularly for techniques like Principal Component Analysis (PCA), eigenvectors and eigenvalues are extracted from the covariance matrix to understand the structure of the data.

	Eigenvectors represent the directions of maximum variance in the data. Think of them as arrows pointing in the direction where the data is most spread out.

	Eigenvalues indicate the magnitude or importance of that variance. A high eigenvalue means the data is very spread out along its corresponding eigenvector, making that direction highly significant.

Sample Data Explained

Let’s use a simple 2D dataset to illustrate this. Imagine we have data for five points with two features, x_1x_1 and x_2x_2. Notice that as x_1x_1 increases, x_2x_2 increases as well, creating a strong linear pattern.

Sample Data: | Point | x_1x_1 | x_2x_2 | | :— | :— | :— | | A | 2 | 3 | | B | 4 | 5 | | C | 5 | 6 | | D | 7 | 8 | | E | 8 | 9 |

1. Covariance Matrix

First, we calculate the covariance matrix for this data. This matrix shows how the two variables change together. For our data, the covariance matrix (CC) is:

C=(5.25.25.25.2)C = \begin{pmatrix} 5.2 & 5.2 \\ 5.2 & 5.2 \end{pmatrix}

The positive value of 5.2 indicates that x_1x_1 and x_2x_2 increase together.

Calculating the Covariance Matrix: A Step-by-Step Guide 🧮

This guide explains how to calculate the covariance matrix for a dataset with two features, from finding the mean to assembling the final matrix.

The covariance matrix for two features (x_1,x_2x_1, x_2) is a 2x2 matrix structured like this:

C=(var(x1)cov(x1,x2)cov(x2,x1)var(x2))C = \begin{pmatrix} \text{var}(x_1) & \text{cov}(x_1, x_2) \\ \text{cov}(x_2, x_1) & \text{var}(x_2) \end{pmatrix}

Step 1: Calculate the Mean

First, we find the average (mean) for each feature.

	Mean of x_1x_1 (x‾_1\bar{x}_1): (2 + 4 + 5 + 7 + 8) / 5 = 5.2

	Mean of x_2x_2 (x‾_2\bar{x}_2): (3 + 5 + 6 + 8 + 9) / 5 = 6.2

Step 2: Calculate the Variances and Covariance

Next, we calculate the values for our matrix. The general formula for sample covariance is:

cov(X,Y)=∑(Xi−X‾)(Yi−Y‾)n−1\text{cov}(X, Y) = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{n-1}

1. Top-Left: Variance of x_1x_1 (same with x_2x_2)

This measures how spread out the x_1x_1 values are. We use the variance formula, which is a special case of covariance where X=Y.

var(x1)=∑(x1i−x‾1)2n−1\text{var}(x_1) = \frac{\sum (x_{1i} - \bar{x}_1)^2}{n-1}

	Known Values:

	Data points (x_1x_1): [2, 4, 5, 7, 8]

	Mean (x‾_1\bar{x}_1): 5.2

	n-1 = 4

	Numerator Calculation (Sum of Squared Differences):

	(2−5.2)2=(−3.2)2=10.24(2 - 5.2)^2 = (-3.2)^2 = 10.24

	(4−5.2)2=(−1.2)2=1.44(4 - 5.2)^2 = (-1.2)^2 = 1.44

	(5−5.2)2=(−0.2)2=0.04(5 - 5.2)^2 = (-0.2)^2 = 0.04

	(7−5.2)2=(1.8)2=3.24(7 - 5.2)^2 = (1.8)^2 = 3.24

	(8−5.2)2=(2.8)2=7.84(8 - 5.2)^2 = (2.8)^2 = 7.84

	Sum = 10.24 + 1.44 + 0.04 + 3.24 + 7.84 = 22.8

	Final Variance Calculation: var(x1)=22.84=5.7\text{var}(x_1) = \frac{22.8}{4} = 5.7

2. Off-Diagonal: Covariance of x_1x_1 and x_2x_2

This measures how x_1x_1 and x_2x_2 change together.

	Numerator Calculation (Sum of Products of Differences):

	(2−5.2)×(3−6.2)=(−3.2)×(−3.2)=10.24(2 - 5.2) \times (3 - 6.2) = (-3.2) \times (-3.2) = 10.24

	(4−5.2)×(5−6.2)=(−1.2)×(−1.2)=1.44(4 - 5.2) \times (5 - 6.2) = (-1.2) \times (-1.2) = 1.44

	(5−5.2)×(6−6.2)=(−0.2)×(−0.2)=0.04(5 - 5.2) \times (6 - 6.2) = (-0.2) \times (-0.2) = 0.04

	(7−5.2)×(8−6.2)=(1.8)×(1.8)=3.24(7 - 5.2) \times (8 - 6.2) = (1.8) \times (1.8) = 3.24

	(8−5.2)×(9−6.2)=(2.8)×(2.8)=7.84(8 - 5.2) \times (9 - 6.2) = (2.8) \times (2.8) = 7.84

	Sum = 10.24 + 1.44 + 0.04 + 3.24 + 7.84 = 22.8

	Final Covariance Calculation: cov(x1,x2)=22.84=5.7\text{cov}(x_1, x_2) = \frac{22.8}{4} = 5.7

(The variance of x_2x_2 is calculated the same way as the variance for x_1x_1 and is also 5.7.)

Step 3: Assemble the Final Matrix

Finally, we place the calculated values into the matrix structure.

C=(5.75.75.75.7)C = \begin{pmatrix} 5.7 & 5.7 \\ 5.7 & 5.7 \end{pmatrix}

(Note: The matrix above is the correctly calculated one for the specific data provided and may differ from simplified matrices used in other examples.)

2. Eigenvectors and Eigenvalues

Next, we find the eigenvectors and eigenvalues of this covariance matrix.

	Eigenvector 1 (v1): [0.707,0.707][0.707, 0.707] with Eigenvalue 1 (λ_1\lambda_1): 10.4

	This eigenvector points diagonally up and to the right, perfectly aligning with the direction in which our data is spread out.

	Its large eigenvalue (10.4) tells us that this direction is very important and captures almost all the variance in the dataset. This is the principal component.

	Eigenvector 2 (v2): [−0.707,0.707][-0.707, 0.707] with Eigenvalue 2 (λ_2\lambda_2): 0.0

	This eigenvector points in a direction perpendicular to the main spread of the data.

	Its eigenvalue is zero, meaning there is no variance along this direction. All our data points lie perfectly on the line defined by the first eigenvector.

By finding the eigenvectors and eigenvalues, we have mathematically confirmed the main direction of our data’s structure (Eigenvector 1) and its significance (Eigenvalue 1). In dimensionality reduction, we would keep the first eigenvector as our new axis and could discard the second one with its zero eigenvalue, effectively reducing the data from 2D to 1D without losing any significant information.

How PCA Works

The core idea of PCA is to find a new axis (or axes) to represent the data. Instead of using the original feature axes (x_1,x_2x_1, x_2, etc.), PCA finds a new axis (let’s call it the z-axis) that best captures the variation and spread of the data.

Preprocessing Steps

Before running PCA, it’s important to preprocess your data:

	Mean Normalization: The first step is to ensure all features have a zero mean. The fit function in scikit-learn handles this for you automatically.

	Feature Scaling: If your features are on very different scales (e.g., house size in square feet vs. number of bedrooms), you should scale them so they have comparable ranges. This helps PCA find a good choice of axes.

Finding the Principal Component

After preprocessing, PCA works to find the best new axis for your data. Let’s imagine we want to reduce our data to just one dimension.

	Projecting Data: PCA projects each data point onto a potential z-axis. A projection is the point on the axis that is closest to the original data point, forming a 90-degree angle.

	Maximizing Variance: A “good” axis is one where the projected points are very spread out. PCA’s goal is to find the axis that maximizes the variance (the spread) of these projected points. By maximizing this variance, we retain as much of the original information as possible. This axis is called the principal component.

	Multiple Components: If you want to reduce your data to more than one dimension (e.g., from 50 features down to 3), PCA will find multiple principal components. The first principal component (z_1z_1) captures the most variance. The second (z_2z_2) will be at a 90-degree angle (also called perpendicular) to the first and will capture the next most variance. Any subsequent component will be perpendicular to the ones before it.

Projecting a Point onto the New Axis

Once PCA finds the principal component (the z-axis), how do we calculate the new coordinate for an existing data point? Let’s say we have a data point with coordinates (2,3)(2,3) on the original x_1,x_2x_1, x_2 axes. And PCA determines that the best z-axis is represented by a length-1 vector, for example, (0.71,0.71)(0.71, 0.71). To find the new coordinate on the z-axis, you calculate the dot product of the data point’s vector and the z-axis vector.

The formula is: z=(x1,x2)⋅(v1,v2)z = (x_1, x_2) \cdot (v_1, v_2) Where:

	(x_1,x_2)(x_1, x_2) is the original data point.

	(v_1,v_2)(v_1, v_2) is the length-1 vector representing the z-axis.

For our example: z=(2,3)⋅(0.71,0.71)=(2×0.71)+(3×0.71)=3.55z = (2,3) \cdot (0.71, 0.71) = (2 \times 0.71) + (3 \times 0.71) = 3.55 So, the new single-number representation for the point (2,3)(2,3) is 3.55.

Reconstruction: From PCA Back to Original Data

It’s also possible to do the reverse: try to get back the original data from the compressed version. This is called reconstruction. You can’t get the original data back perfectly because some information was lost, but you can get a close approximation. To do this, you multiply the new coordinate by the principal component vector.

The formula is: (x1,approx,x2,approx)=z×(v1,v2)(x_{1,approx}, x_{2,approx}) = z \times (v_1, v_2) Where:

	zz is the coordinate on the principal component axis.

	(v_1,v_2)(v_1, v_2) is the length-1 vector representing that axis.

Continuing our example: (x1,approx,x2,approx)=3.55×(0.71,0.71)=(2.52,2.52)(x_{1,approx}, x_{2,approx}) = 3.55 \times (0.71, 0.71) = (2.52, 2.52) The reconstructed point (2.52,2.52)(2.52, 2.52) is a reasonable approximation of the original point (2,3)(2,3).

PCA vs. Linear Regression

It’s important not to confuse PCA with Linear Regression. They are fundamentally different algorithms used for different purposes.

	Feature
	Linear Regression
	Principal Component Analysis (PCA)

	Algorithm Type
	Supervised learning.
	Unsupervised learning.

	Goal
	Predict a target value, y, based on input features, x.
	Reduce the number of features by finding new axes that maximize data variance.

	Data
	Requires features (x) and a special target label (y).
	Only uses features (x_1,x_2x_1, x_2, etc.); there is no y label.

	Error Measurement
	Minimizes the vertical distance between the predicted line and the actual y values.
	Minimizes the projection distance (the short, 90-degree lines) from the data points to the new axis (the principal component).

	Feature Treatment
	Treats y as a special variable to be predicted.
	Treats all features equally.

Implementing PCA with Scikit-learn

You can easily implement PCA using the scikit-learn library. Here are the main steps:

	Scale Data: First, apply feature scaling if your features have very different ranges.

	“Fit” PCA: Use the fit() method to run the PCA algorithm on your data. You need to specify n_components, which is the number of new axes (principal components) you want to end up with. For visualization, this is usually 2 or 3.

from sklearn.decomposition import PCA
import numpy as np

Example data with 6 points and 2 features
X = np.array([[1, 1], [1.5, 2], [3, 3.2], [4, 4.8], [5, 5.1], [6, 7]])

Create a PCA object to reduce to 1 dimension
pca_1 = PCA(n_components=1)

Fit the data
pca_1.fit(X)

	Check Explained Variance: After fitting, it’s a good idea to check how much of the original data’s variability is captured by your new components. You can do this with explained_variance_ratio_.

This shows the percentage of variance captured by the new axis
In this case, 99.2%
print(pca_1.explained_variance_ratio_) # Output: [0.992]

If you fit for two components on 2D data, the explained variance might look like [0.992, 0.008], meaning the first component (z_1z_1) captures 99.2% of the variance and the second (z_2z_2) captures the remaining 0.8%.

	Transform Data: Finally, use the transform() method to project your original data onto the new principal components. This gives you the new, lower-dimensional representation of your data.

Project the original data onto the new axis
X_projected = pca_1.transform(X)
print(X_projected)

This will output an array of the new coordinates for each of your original data points. You can then use these new coordinates for plotting.

Applications of PCA

The most common and useful application of PCA today is for data visualization. It allows you to take high-dimensional data and plot it in 2D or 3D to gain insights and understand its structure.

Other historical applications, which are less common now due to advances in computing and storage, include:

	Data Compression: Reducing 50 features to 10 to save storage space.

	Speeding up Supervised Learning: Reducing the number of features to make a supervised learning model train faster. This is less relevant for modern algorithms like deep learning.

RL: Foundations of Reinforcement Learning

This summary covers the fundamental concepts of Reinforcement Learning (RL). We will explore how an agent learns to make decisions by interacting with an environment to maximize a cumulative reward. We will use a simplified Mars Rover problem to illustrate the core components of the RL framework.

What is Reinforcement Learning?

Reinforcement Learning is a pillar of machine learning where an agent learns to achieve a goal in a complex, uncertain environment. Unlike supervised learning, where the algorithm is given labeled data with the “correct” answer, an RL agent learns by trial and error.

The core idea is to tell the agent what to do rather than how to do it. This is achieved through a reward function, which acts like training a dog:

	When the agent performs a desirable action, it receives a positive reward (“good dog”).

	When it performs an undesirable action (like crashing a helicopter), it receives a negative reward (“bad dog”).

The agent’s job is to figure out a sequence of actions that will maximize its total rewards over time. This approach has been successfully applied to various fields:

	Robotics: Controlling autonomous helicopters and teaching robotic dogs to walk over obstacles.

	Factory Optimization: Arranging factory layouts to maximize throughput.

	Financial Trading: Optimizing stock selling strategies.

	Game Playing: Mastering games like Chess, Go, and various video games.

The Reinforcement Learning Framework

To formalize an RL problem, we define several key components. We’ll use a simplified Mars Rover example for illustration.

States, Actions, and Rewards

Imagine a Mars Rover that can be in one of six positions.

 [State 1] [State 2] [State 3] [State 4] [State 5] [State 6]
Reward: 100 0 0 0 0 40

	State (s): A state is the agent’s current situation or position. In our example, the rover can be in one of six states, State 1 through State 6.

	Action (a): An action is a move the agent can choose to make from its current state. The Mars Rover has two possible actions: move left or move right.

	Reward (R): A reward is a numerical value the agent receives for being in a state. It tells the agent how good or bad that state is.

	The rover gets a reward of 100 at State 1 and 40 at State 6. These represent locations with interesting science missions.

	The rewards for states 2, 3, 4, and 5 are 0.

	Terminal States: Some states can be terminal, meaning the process (or “episode”) ends when the agent reaches them. In the rover example, State 1 and State 6 are terminal states. After receiving the reward at these states, the day ends, and no more actions can be taken.

The basic interaction loop in RL is as follows:

	The agent starts in a state S.

	It receives the reward R(S) associated with that state.

	It chooses an action a.

	As a result of the action, it transitions to a new state S'.

The Return: Measuring Cumulative Rewards

An agent receives a sequence of rewards over time. But how do we know if one sequence of rewards is better than another? For example, is it better to get $10 right now or $100 in thirty minutes? This is where the concept of return comes in.

The return, often denoted as G, is the sum of all future rewards, but with a twist: future rewards are “discounted.”

The Discount Factor (γ\gamma)

The discount factor, represented by the Greek letter gamma (γ\gamma), is a number between 0 and 1. It determines how much we value future rewards compared to immediate ones.

	Because γ\gamma is less than 1, it makes the algorithm a bit “impatient.”

	Rewards received sooner are given more weight than rewards received far in the future.

	A common choice for γ\gamma is a value close to 1, like 0.99. For our rover example, we will use an illustrative value of γ=0.5\gamma = 0.5.

The formula for the return G is:

G=R1+γR2+γ2R3+γ3R4+…G = R_1 + \gamma R_2 + \gamma^2 R_3 + \gamma^3 R_4 + \dots

Where:

	R1R_1 is the reward received in the first time step.

	R2R_2 is the reward received in the second time step, and so on.

	γ\gamma is the discount factor.

Calculating the Return: An Example

Let’s say our rover starts at State 4 and decides to always move left. The sequence of states is 4 -> 3 -> 2 -> 1 (terminal). The rewards received at each state are:

	Reward at State 4 (R1R_1): 0

	Reward at State 3 (R2R_2): 0

	Reward at State 2 (R3R_3): 0

	Reward at State 1 (R4R_4): 100

Using γ=0.5\gamma = 0.5, the return from State 4 is calculated as:

G=0+(0.5×0)+(0.52×0)+(0.53×100)G = 0 + (0.5 \times 0) + (0.5^2 \times 0) + (0.5^3 \times 100) G=0+0+0+(0.125×100)=12.5G = 0 + 0 + 0 + (0.125 \times 100) = 12.5

If the rover instead started at State 3, it would reach the reward one step sooner, so the reward would be discounted less, resulting in a higher return of 25.

Note on Negative Rewards: The discount factor has an interesting effect on negative rewards. It incentivizes the agent to push negative outcomes as far into the future as possible, since their negative impact on the return will be reduced.

The Policy (π\pi): The Agent’s Strategy

How does the agent decide which action to take in each state? This is determined by its policy.

A policy, denoted by the Greek letter pi (π\pi), is a function that maps a state to an action. It’s essentially the agent’s strategy or “controller.”

π(s)=a\pi(s) = a

This means, “when in state s, take action a.”

The ultimate goal of reinforcement learning is to find an optimal policy, π*\pi^*, that tells the agent what action to take in every state in order to maximize the total return.

For example, a policy for the rover might be:

	π(State 2)=left\pi(\text{State 2}) = \text{left}

	π(State 3)=left\pi(\text{State 3}) = \text{left}

	π(State 4)=left\pi(\text{State 4}) = \text{left}

	π(State 5)=right\pi(\text{State 5}) = \text{right}

This mixed policy is different from a simpler policy like “always go left.” A reinforcement learning algorithm’s job is to figure out which of these policies is the best one.

And overview of the Startegy

[image: RL Explained]
RL Explained

The image illustrates the concepts of a reinforcement learning formalism, known as a Markov Decision Process (MDP), through three distinct applications: a Mars rover, a helicopter, and the game of chess.

The formalism consists of several key concepts which are detailed for each example:

	States: The current situation or configuration of the environment.

	Actions: The possible moves or decisions the agent can make.

	Rewards: Feedback from the environment, indicating the outcome of an action.

	Discount Factor (γ\gamma): A value that determines the importance of future rewards.

	Return: The total accumulated rewards, calculated using the rewards and the discount factor.

	Policy (π\pi): A strategy that maps states to actions to maximize the return.

Mars Rover

	States: The environment is defined by six different states.

	Actions: The available actions are to move left or right.

	Rewards: The rewards are +100 for the leftmost state, +40 for the rightmost state, and 0 for the states in between.

	Discount Factor (γ\gamma): The discount factor is 0.5.

	Return: The return is calculated by the formula R1+γR2+γ2R3+...R_1 + \gamma R_2 + \gamma^2 R_3 +

	Policy (π\pi): The policy helps select actions based on the current state to maximize the return.

Helicopter

	States: The state is the helicopter’s position, orientation, and speed.

	Actions: The actions correspond to how the control sticks are moved.

	Rewards: The helicopter receives a reward of +1 for flying well and -1000 if it crashes[cite: 8]. This reward function indicates how well the helicopter is flying.

	Discount Factor (γ\gamma): A suggested discount factor is 0.99.

	Return: The return is computed using the same formula as in the Mars rover example.

	Policy (π\pi): The goal is to find a policy, π(s)\pi(s), that takes the helicopter’s state (s) as input and outputs the best action (a) to take.

Chess

	States: The state is defined by the position of all the pieces on the board.

	Actions: The actions are the possible legal moves in the game.

	Rewards: A reward of +1 is given for winning a game, -1 for losing, and 0 for a tie.

	Discount Factor (γ\gamma): A discount factor very close to one, such as 0.995, is typically used.

	Return: The return is calculated using the same formula as the other applications.

	Policy (π\pi): The objective is to use a policy to choose a good action given a particular board position.

Markov Decision Process (MDP)

The formal framework we have just described—consisting of states, actions, rewards, a discount factor, and policies—is called a Markov Decision Process (MDP).

The term Markov refers to the Markov Property, which states that the future depends only on the current state, not on the sequence of states that came before it. In other words:

The future is independent of the past given the present.

For our rover, its next state depends only on its current position and the action it takes, not on how it arrived at that position.

The MDP formalism describes the interaction between an agent and an environment.

	The agent observes its current state and the reward.

	The agent uses its policy to choose an action.

	The environment responds by transitioning the agent to a new state and providing a new reward.

	This cycle repeats.

RL: State-action value function

This summary covers the foundational concepts of the state-action value function (Q-function) and the Bellman equation, essential tools for understanding and building reinforcement learning algorithms. We will also explore how these concepts adapt to environments with random or stochastic outcomes.

The State-Action Value Function (Q-Function)

In reinforcement learning, a key quantity our algorithms will try to compute is the state-action value function, commonly known as the Q-function.

The Q-function is denoted by the letter Q and is a function of a state s and an action a. The value of Q(s,a)Q(s, a) represents the return (the sum of discounted future rewards) you would get if you start in state s, take the action a once, and then behave optimally from that point onwards.

You might notice this definition seems a bit circular: how can we know what “optimal behavior” is if we don’t already have the optimal policy? This is a valid point, but rest assured that the reinforcement learning algorithms we’ll study will provide a way to compute the Q-function without knowing the optimal policy in advance.

Understanding Q-Values: An Example

[image: Q-Value Calculation]
Q-Value Calculation

Let’s use our Mars Rover example, where the discount factor is γ=0.5\gamma = 0.5. The optimal policy is to go left from states 2, 3, and 4, and go right from state 5.

	Calculating Q(state 2, right)Q(\text{state 2, right}):

	Start at state 2 and take the action right, moving you to state 3. The immediate reward is 0.

	From state 3, follow the optimal policy: go left to state 2 (reward 0), then left again to the terminal state 1 (reward 100).

	The sequence of rewards is: 0 (from state 2), 0 (from state 3), 0 (from state 2), 100 (at state 1).

	The return is calculated as: 0+0.51⋅0+0.52⋅0+0.53⋅100=12.50 + 0.5^1 \cdot 0 + 0.5^2 \cdot 0 + 0.5^3 \cdot 100 = 12.5.

	Therefore, Q(state 2, right)=12.5Q(\text{state 2, right}) = 12.5.

	Calculating Q(state 2, left)Q(\text{state 2, left}):

	Start at state 2 and take the action left, moving you to the terminal state 1. The immediate reward is 0.

	The next reward received is 100 at state 1.

	The return is calculated as: 0+0.5⋅100=500 + 0.5 \cdot 100 = 50.

	Therefore, Q(state 2, left)=50Q(\text{state 2, left}) = 50.

The Q-function faithfully reports the return for taking an action and behaving optimally thereafter, regardless of whether that initial action is good or bad.

From Q-Function to Optimal Policy

Once you have computed the Q-function, it gives you a direct way to determine the best action to take in any state. The optimal policy, π(s)\pi(s), is to simply choose the action a that maximizes the value of Q(s,a)Q(s, a).

The best possible return from any state s is the largest value of Q(s,a)Q(s,a), maximizing over all possible actions a.

For example, in state 2, we have:

	Q(state 2, left)=50Q(\text{state 2, left}) = 50

	Q(state 2, right)=12.5Q(\text{state 2, right}) = 12.5

To get the highest possible return from state 2, you should choose the action left, because it has the higher Q-value. This holds true for any state. By picking the action a that maximizes Q(s,a)Q(s,a), you are choosing the path that yields the biggest total return.

The Bellman Equation

So, how do we compute these Q-values? The Bellman equation is a key equation in reinforcement learning that helps us do just that.

Bellman Equation: The Formula

First, let’s define some notation:

	ss: The current state.

	aa: The current action taken in state ss.

	r(s)r(s): The reward received for being in state ss.

	s′s': The new state you arrive in after taking action aa.

	a′a': A possible action you could take in the next state s′s'.

	γ\gamma: The discount factor.

The Bellman equation is as follows:

Q(s,a)=r(s)+γ⋅maxa′Q(s′,a′)Q(s, a) = r(s) + \gamma \cdot \max_{a'} Q(s', a')

This equation states that the Q-value for a given state-action pair is the sum of the immediate reward r(s)r(s) and the discounted value of the best possible action from the next state s′s'.

Note on Terminal States: For a terminal state, there is no next state s′s'. The Bellman equation simplifies to just the immediate reward: Q(s,a)=r(s)Q(s, a) = r(s).

[image: Q-Learning Alogorithm]
Q-Learning Alogorithm

Intuition Behind the Bellman Equation

The total return from starting in state s and taking action a can be broken down into two parts:

	The Immediate Reward: This is r(s)r(s), the reward you get right away for being in the current state.

	The Discounted Future Return: After taking action a, you land in a new state s′s'. If you act optimally from s′s' onwards, the best possible return you can get is max⁡a′Q(s′,a′)\displaystyle \max_{a'} Q(s', a'). We discount this future return by the factor γ\gamma.

The Bellman equation beautifully captures this relationship, breaking down the value of a decision into its immediate consequences and its future potential.

Stochastic Environments

In the real world, actions don’t always have perfectly reliable outcomes. A Mars Rover might try to go left, but slippery rocks could cause it to slide right instead. This is known as a stochastic environment.

Expected Return

When the environment is stochastic, the sequence of rewards you get from following a policy is random. Therefore, our goal shifts from maximizing a single, deterministic return to maximizing the average return, also called the expected return.

The job of the reinforcement learning algorithm in a stochastic environment is to find a policy π\pi that maximizes this average or expected sum of discounted rewards, often written as:

E[R1+γR2+γ2R3+…]E[R_1 + \gamma R_2 + \gamma^2 R_3 + \dots]

Here, E stands for expected value, which is just another word for the average.

The Bellman Equation for Stochastic Environments

The Bellman equation can be adapted for stochastic environments. The core idea remains the same, but we must now account for the randomness of the next state, s′s'.

When you take action a in state s, the next state s′s' is now random. The Bellman equation is modified to include an expectation (average) over the possible outcomes:

Q(s,a)=r(s)+γ⋅E[maxa′Q(s′,a′)]Q(s, a) = r(s) + \gamma \cdot E\left[\max_{a'} Q(s', a')\right]

The key difference is the expectation operator E[…]E[\dots], which averages the maximum future returns over all possible next states s′s' that could result from taking action a.

Interactive Learning with the Optional Lab

To build a strong intuition for these concepts, it’s highly recommended that you experiment with the provided optional Jupyter Notebook lab. By changing key parameters, you can see for yourself how the Q-values and the optimal policy change.

Parameters to Explore:

	Terminal Rewards: See how adjusting the final rewards (e.g., changing the right terminal reward from 40 to 10) can completely change the optimal path for the agent.

	Discount Factor (γ\gamma):

	A high γ\gamma (e.g., 0.9) makes the agent more patient, willing to wait for a larger reward that is further away.

	A low γ\gamma (e.g., 0.3) makes the agent impatient, preferring smaller, more immediate rewards.

	Misstep Probability: Introduce stochasticity by setting the probability that the rover moves in the opposite direction of your command. As you increase this probability, you’ll notice that the Q-values generally decrease because your degree of control over the agent is lower.

Impact of Gamma on Q-Score

The gamma value directly influences the agent’s policy by adjusting the weight of future rewards in the Q-score calculation.

	High Gamma (e.g., 0.9): When gamma is high, the agent is “less impatient” and more willing to wait for a larger reward that is further away. Future rewards are not discounted as heavily, making long-term strategies more appealing. For example, with γ=0.9\gamma=0.9, the agent is willing to go left from state 5 to get a higher eventual reward.

	Low Gamma (e.g., 0.3): A low gamma heavily discounts future rewards, making the agent “incredibly impatient”. The agent will prioritize smaller, closer rewards over larger ones that take longer to achieve. For instance, with γ=0.3\gamma=0.3, the agent in state 4 chooses to go for the closer reward of 40 rather than the larger, more distant reward of 100.

In summary, a high γ\gamma makes an agent prioritize large, long-term rewards, while a low γ\gamma makes it favor smaller, immediate ones.

RL: Continuous State Spaces

This chapter explores how to apply reinforcement learning to problems with continuous state spaces, where the state is represented by a vector of numbers rather than a discrete value. We’ll use the Lunar Lander application as our primary example to build and refine a powerful learning algorithm using neural networks.

Continuous State Spaces

In many real-world applications, especially in robotics, an agent’s state isn’t one of a few distinct positions but is described by a set of continuous values.

Examples of Continuous States

	Self-Driving Car/Truck: The state of a vehicle can be described by a vector of six numbers:

	x, y: The position coordinates.

	Theta (θ\theta): The vehicle’s orientation or angle.

	x_dot (ẋ\dot{x}): The velocity in the x-direction.

	y_dot (ẏ\dot{y}): The velocity in the y-direction.

	Theta_dot (θ̇\dot{\theta}): The angular velocity, or how quickly the angle is changing.

	Autonomous Helicopter: Controlling a helicopter requires a more complex state vector of 12 numbers:

	Position (x, y, z): The helicopter’s location in three-dimensional space.

	Orientation (roll, pitch, yaw): Three angles to describe its orientation.

	Velocity (ẋ\dot{x}, ẏ\dot{y}, ż\dot{z}): Its speed in each of the three directions.

	Angular Velocity: The rate at which its roll, pitch, and yaw are changing.

The Lunar Lander: An Overview

The Lunar Lander is a classic reinforcement learning problem where the goal is to safely land a simulated vehicle on the moon’s surface between two yellow flags. The algorithm must learn a policy to fire thrusters at the right times to achieve a soft landing.

Actions

There are four possible discrete actions the lander can take at any time step:

	Nothing: Do nothing and let gravity take its course.

	Left: Fire the left thruster, pushing the lander to the right.

	Main: Fire the main engine, thrusting downwards to slow the descent.

	Right: Fire the right thruster, pushing the lander to the left.

State Space

The state of the Lunar Lander is a vector of eight numbers:

	x, y: The lander’s coordinates.

	x_dot, y_dot: The lander’s velocity in the horizontal and vertical directions.

	Theta (θ\theta): The angle of the lander.

	Theta_dot (θ̇\dot{\theta}): The angular velocity of the lander.

	l, r: Binary values (0 or 1) indicating if the left and right legs are touching the ground.

Reward Function

The reward function is designed to incentivize a successful landing:

	Moving towards the landing pad: Positive reward.

	Moving away from the pad: Negative reward.

	Crashing: A large penalty of -100.

	Soft landing: A reward of +100.

	Each leg grounding: A reward of +10.

	Firing the main engine: A small penalty of -0.3 to discourage fuel waste.

	Firing side thrusters: A smaller penalty of -0.03.

The goal is to learn a policy, π\pi, that maps a state ss to an action aa to maximize the sum of discounted rewards, or return. The discount factor, γ\gamma, is typically set to 0.985 for this task.

Learning with a Deep Q-Network (DQN)

To solve problems like the Lunar Lander, we use a Deep Q-Network (DQN). The key idea is to train a neural network to approximate the state-action value function, denoted as Q(s,a)Q(s, a). This function estimates the expected return from taking action aa in state ss. By learning a good approximation of Q(s,a)Q(s, a), we can choose the action with the highest Q-value in any given state.

Initial Neural Network Architecture

One approach is to train a neural network that takes a state-action pair as input and outputs the corresponding Q-value.

	Input: A vector of 12 numbers.

	8 numbers for the state vector (ss).

	4 numbers for a one-hot encoding of the action (aa). For example, the action ‘nothing’ could be [1, 0, 0, 0].

	Hidden Layers: Two hidden layers, each with 64 units.

	Output: A single unit that outputs the approximated value of Q(s,a)Q(s, a).

A More Efficient Architecture

A more efficient and commonly used architecture inputs only the state and outputs the Q-values for all possible actions at once.

	Input: A vector of 8 numbers representing the state (ss).

	Hidden Layers: Two hidden layers, each with 64 units.

	Output: A layer with 4 units, where each unit corresponds to one of the four actions and outputs its Q-value. The outputs are Q(s,nothing)Q(s, \text{nothing}), Q(s,left)Q(s, \text{left}), Q(s,main)Q(s, \text{main}), and Q(s,right)Q(s, \text{right}).

This architecture is much more efficient because it requires only one forward pass (inference) through the network to determine the best action, instead of four.

Training the DQN Model

The process of training the neural network uses principles from supervised learning, where we create a dataset of inputs (xx) and target labels (yy).

Generating Training Data with the Bellman Equation

The target values (yy) for our training set are generated using the Bellman equation. The Bellman equation defines the optimal Q-value as follows:

Q(s,a)=R(s)+γmaxa′Q(s′,a′)Q(s, a) = R(s) + \gamma \max_{a'} Q(s', a')

	R(s)R(s) is the reward received after being in state ss.

	γ\gamma (gamma) is the discount factor.

	s′s' is the new state reached after taking action aa in state ss.

	max⁡a′Q(s′,a′)\displaystyle \max_{a'} Q(s', a') is the maximum Q-value achievable from the next state s′s'.

To create a training set, we first have the agent interact with the environment (e.g., by taking random actions) to collect a large number of experience tuples of the form (s,a,R(s),s′)(s, a, R(s), s'). Each tuple can then be converted into a single training example (x,y)(x, y):

	The input x is the state-action pair (s,a)(s, a).

	The target value y is calculated using the right-hand side of the Bellman equation: y=R(s)+γmax⁡a′Q(s′,a′)\displaystyle y = R(s) + \gamma \max_{a'} Q(s', a').

The Full DQN Algorithm

The complete training algorithm is an iterative process:

	Initialize: Create a neural network with random weights and parameters. This network is our initial, random guess for the Q-function.

	Collect Experience: Take actions in the environment (initially randomly) to gather experience tuples (s,a,R(s),s′)(s, a, R(s), s').

	Store Experience: Store these tuples in a replay buffer, which typically holds the most recent experiences (e.g., the last 10,000 tuples).

	Create Training Set: Sample from the replay buffer to create a training set of (x,y)(x, y) pairs, using the Bellman equation to calculate the target yy. The current Q-network is used to estimate the Q(s′,a′)Q(s', a') term.

	Train Network: Train a new network, Q_newQ_{new}, on this training set to learn the mapping from s,as,a to the target yy.

	Update Q-network: Update the main Q-network with the newly trained one (Q=Q_newQ = Q_{new}).

	Repeat: Go back to step 2 and repeat the process. As the Q-network improves, it provides better target values, leading to a virtuous cycle of improvement.

Refining the Learning Algorithm

While the base DQN algorithm works, several refinements can make it more stable and efficient.

Exploration vs. Exploitation: The Epsilon-Greedy Policy

A key challenge in reinforcement learning is the trade-off between exploration (trying new actions to see if they are better) and exploitation (using the best-known action to maximize reward). If the agent only ever exploits, it might get stuck with a suboptimal policy simply because it never tried a better action by chance.

The most common solution is the Epsilon-greedy policy:

	With probability 1−ϵ1 - \epsilon, choose the greedy action (the one that maximizes the current estimate of Q(s,a)Q(s,a)).

	With probability ϵ\epsilon (a small number, e.g., 0.05), choose a random action.

This ensures the agent continues to explore the environment and can escape from bad initializations. A common practice is to start with a high value of ϵ\epsilon (e.g., 1.0, for purely random actions) and gradually decrease it over time as the Q-function estimate improves.

Mini-Batch Gradient Descent

When the replay buffer is very large (e.g., 10,000 or more examples), training the neural network on the entire dataset in every step is computationally expensive and slow.

Mini-batch gradient descent solves this by using only a small, random subset (mini-batch) of the data (e.g., 1,000 examples) for each training iteration. While each step is “noisier” and might not always point directly toward the optimal solution, the steps are much faster, leading to a significant overall speedup in the learning process.

Soft Updates

In the DQN algorithm, the step Set Q = Qnew\displaystyle Q_{new} involves copying the weights of the newly trained network directly to the target network. This can cause abrupt changes and instability if a single training batch results in a poor network.

A soft update makes this process more gradual and reliable. Instead of a direct copy, the target network’s weights (WW, BB) are slowly moved towards the newly trained weights (Wnew\displaystyle W_{new}, Bnew\displaystyle B_{new}):

W=τWnew+(1−τ)WW = \tau W_{new} + (1 - \tau) W B=τBnew+(1−τ)BB = \tau B_{new} + (1 - \tau) B

Here, τ\tau (tau) is a small hyperparameter (e.g., 0.01). This means the target network is updated to be 99% of its old self plus 1% of the new network, preventing drastic changes and helping the algorithm converge more reliably.

Practical Considerations and State of Reinforcement Learning

While reinforcement learning is a powerful and exciting field, it’s important to have a practical perspective on its current state.

	Simulation vs. Reality: It is often much easier to get an RL algorithm working in a simulation than on a real-world robot or application.

	Prevalence: Today, supervised and unsupervised learning are used in far more practical applications than reinforcement learning.

	Hyperparameter Tuning: Reinforcement learning algorithms can be very “finicky.” They are often much more sensitive to the choice of hyperparameters (like learning rate or ϵ\epsilon) than supervised learning algorithms, and poor choices can cause training to fail or take dramatically longer.

	Potential: Despite the challenges, the potential for RL is very large, and it remains a major pillar of machine learning.

EPUB/media/file4.png
My Notes on
Andrew Ng’s
Unsupervised
Machine Learning

Vinoo Nedungadan

EPUB/nav.xhtml

Unsupervised Machine Learning

		Table of Contents

		K-means Clustering		The K-means Algorithm

		The K-means Cost Function (Distortion)

		Handling Local Optima

		Choosing the Number of Clusters (K)

		Anomaly Detection		What is Anomaly Detection?		Core Idea: Density Estimation

		Applications of Anomaly Detection

		The Gaussian (Normal) Distribution		Estimating Parameters from Data

		The Anomaly Detection Algorithm		The Model

		Algorithm Steps

		Developing and Evaluating an Anomaly Detection System		Using Labeled Data for Evaluation

		Evaluation Process

		Classification Metrics (for Supervised Learning)

		Anomaly Detection vs. Supervised Learning

		Tips for Choosing and Tuning Features		Make Features Gaussian

		Error Analysis and Creating New Features

		Chapter Summary: Recommender Systems		1. Defining the Problem & Notation

		2. Content-Based Filtering: Predicting Ratings with Known Features		The Prediction Model

		The Cost Function

		3. Collaborative Filtering: Learning Features from Ratings		The Unified Cost Function

		Optimization with Gradient Descent

		4. Generalizing to Binary Labels		The Logistic Prediction Model

		The Binary Cross-Entropy Cost Function

		Chapter Summary: Content-Based Filtering		What is Content-Based Filtering? 🤔

		The Deep Learning Architecture: A Tale of Two Networks 🧠

		How Does It Learn? The Cost Function Explained 📈

		Scaling Up: The Retrieval and Ranking Strategy 🚀

		A Word on Ethics: The Power and Peril of Recommendations ⚖️

		Chapter Summary: Implementing Recommender Systems		Mean Normalization: A Simple Trick for Better Predictions 🚀		How It Works:

		Finding Similar Items and the Limits of Collaborative Filtering 🧐		Limitations to Keep in Mind:

		Bringing It to Life with TensorFlow 🤖		The Magic of tf.GradientTape:

		Chapter Summary: Principal Component Analysis (PCA)		What is PCA?		Eigenvectors and Eigenvalues Explained 📊

		Step 3: Assemble the Final Matrix

		How PCA Works		Preprocessing Steps

		Finding the Principal Component

		Projecting a Point onto the New Axis

		Reconstruction: From PCA Back to Original Data

		PCA vs. Linear Regression

		Implementing PCA with Scikit-learn

		Applications of PCA

		RL: Foundations of Reinforcement Learning		What is Reinforcement Learning?

		The Reinforcement Learning Framework		States, Actions, and Rewards

		The Return: Measuring Cumulative Rewards		The Discount Factor (γ\gamma)

		Calculating the Return: An Example

		The Policy (π\pi): The Agent’s Strategy

		And overview of the Startegy		Mars Rover

		Helicopter

		Chess

		Markov Decision Process (MDP)

		RL: State-action value function		The State-Action Value Function (Q-Function)		Understanding Q-Values: An Example

		From Q-Function to Optimal Policy

		The Bellman Equation		Bellman Equation: The Formula

		Intuition Behind the Bellman Equation

		Stochastic Environments		Expected Return

		The Bellman Equation for Stochastic Environments

		Interactive Learning with the Optional Lab		Parameters to Explore:

		Impact of Gamma on Q-Score

		RL: Continuous State Spaces		Continuous State Spaces		Examples of Continuous States

		The Lunar Lander: An Overview		Actions

		State Space

		Reward Function

		Learning with a Deep Q-Network (DQN)		Initial Neural Network Architecture

		A More Efficient Architecture

		Training the DQN Model		Generating Training Data with the Bellman Equation

		The Full DQN Algorithm

		Refining the Learning Algorithm		Exploration vs. Exploitation: The Epsilon-Greedy Policy

		Mini-Batch Gradient Descent

		Soft Updates

		Practical Considerations and State of Reinforcement Learning

 		
 Title Page

 		
 Cover

EPUB/media/file1.png
Mars rover j A ™ Helicopter
oo &

" states 6 states position of helicopter pieces on board

> actions -— how to move possible move
control stick

™ rewards 100, 0,40 +1,-1000 +1, o,~1

> discount factor y 0.5 0,99 0,995

S return Rit yR+y%Rs+ o | Rit yRo4y%Rst o | Rit yRy+y?Ry+

 policy ool T[]] Find (s) =

Find n(s) = a

af‘ Ll)

EPUB/media/file2.png
(A(5,2) = Returnif you
+ startin state s.
« take action a (once).
+ then behave optimally after that.
100 50 25 12,5 20 40 <+— return
- - - — «— action
100 0 0 0 0 40 «— reward

EPUB/media/file3.png
Algorithm 1: Deep Q-Learning with Experience Replay

1 Initialize memory buffer D with capacity N
2 Initialize Q-Network with random weights w

s Initialize target Q-Network with weights w™ = w
4 for episode i = 1 to M do

5 | Receive initial observation state S;
6 | fort=1to T do
1 Observe state ; and choose action A; using an e-greedy policy
s Take action A; in the environment, receive reward R; and next state Se+1
o Store experience tuple (Si, A, Re, St+1) in memory buffer D
10 Every C steps perform a learning update:
1 Sample random mini-batch of experience tuples (S;, 4;, Rj, Sj41) from D
12 Set y; = R; if episode terminates at step j + 1, otherwise set y;= R; +ymaxa Q(s;41,a’)
13 Perform a gradient descent step on (y; — Q(s;, aj; w))? with respect to the @Q-Network weights w
14 Update the weights of the Q-Network using a soft update
15 | end
16 end

EPUB/media/file0.png
Size
PCA: find new axis and coordinates

vse fewer numbers .
x4 1o capture Mgize” feature height

cight

2 2 4 fextures

mony S
fentires ™ § s

