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Chapter Summary: Cost Function Intuition

This chapter provides an intuitive understanding of the cost function in the context of linear regression. We’ll explore how it measures the performance of a model and how visualizing it can help us find the best parameters to fit our data.




The Cost Function: A Deeper Dive

In linear regression, our goal is to fit a straight line to our training data. This line is represented by our model. The cost function is a crucial tool that tells us how well our model is performing.


The Role of Parameters: w and b

Our linear model is defined by the function:

fw,b(x)=wx+bf_{w,b}(x) = wx + b

Here, w and b are the parameters of the model, which we can adjust to improve its accuracy. They are also sometimes called coefficients or weights.


	b is the y-intercept, determining where the line crosses the vertical axis.

	w is the slope, controlling the steepness of the line.



By choosing different values for w and b, we get different straight lines. Our objective is to find the specific values for these parameters so that the line fits our training data as closely as possible.



Formulating the Cost Function

To measure how well a particular line (defined by a choice of w and b) fits the data, we use a cost function, J(w, b). This function calculates the difference between the model’s predictions and the actual true values from the training set.

The most common choice for linear regression is the squared error cost function:

J(w,b)=12m∑i=1m(fw,b(x(i))−y(i))2J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2

Let’s break this down: * fw,b(x(i))f_{w,b}(x^{(i)}) is the model’s prediction for the ithi^{th} training example. This is also denoted as ŷ(i)\hat{y}^{(i)}. * y(i)y^{(i)} is the actual target value for the ithi^{th} training example. * (fw,b(x(i))−y(i))(f_{w,b}(x^{(i)}) - y^{(i)}) is the error for that single example—the difference between the predicted and actual value. * The errors are squared to ensure they are positive and to penalize larger errors more heavily. * ∑i=1m\sum_{i=1}^{m} sums up these squared errors for all m training examples. * 12m\frac{1}{2m} calculates the mean of the squared errors, with the division by 2 being a mathematical convenience for later calculations.

The goal of linear regression is to find the values for w and b that minimize this cost function, J(w, b).






Visualizing the Cost Function

To build intuition, we can visualize how the cost J changes as we alter the parameters w and b.


A Simplified Model: Fixing b = 0


[image: Simplified Model]
Simplified Model

To start simply, let’s assume b = 0. Our model becomes:

fw(x)=wxf_w(x) = wx

This means the line must pass through the origin (0,0). Our cost function now only depends on a single parameter, w:

J(w)=12m∑i=1m(wx(i)−y(i))2J(w) = \frac{1}{2m} \sum_{i=1}^{m} (wx^{(i)} - y^{(i)})^2

If we plot J(w) against w, we get a U-shaped curve. The lowest point on this curve represents the value of w that results in the best possible fit for the data under this simplified model.


[image: Plot of J(w)]
Plot of J(w)

Let’s consider a simple training set with three points: (1, 1), (2, 2), and (3, 3).










	Value of w
	Model f(x)
	Cost J(w)
	Description





	1
	f(x)=1xf(x) = 1x
	0
	The line passes perfectly through all data points. The error is zero for every point, so the total cost is zero. This is the minimum possible cost.



	0.5
	f(x)=0.5xf(x) = 0.5x
	~0.58
	The line has a shallower slope. There are now errors (vertical distances) between the points and the line. The cost is a positive value calculated from the sum of these squared errors.



	0
	f(x)=0xf(x) = 0x
	~2.33
	The model is a horizontal line along the x-axis. The errors are larger, resulting in an even higher cost.





By plotting these points and others, we can trace the shape of the cost function J(w).



The Full Model: Visualizing J(w, b)


[image: Full Model]
Full Model

When we include both w and b, the cost function J(w, b) becomes a 3D surface instead of a 2D curve. This surface often looks like a soup bowl or a hammock.


	The two horizontal axes represent the parameters w and b.

	The vertical axis represents the cost J(w, b).



The lowest point at the bottom of the bowl corresponds to the pair of (w, b) values that minimizes the cost, giving us the best-fitting line.

A more convenient way to visualize this 3D surface in 2D is using a contour plot. Imagine looking down on the bowl from above. Each oval (or ellipse) on a contour plot represents a set of w and b values that produce the same cost J. The center of the innermost oval is the minimum of the cost function.



Connecting Plots: Model Fit and Cost

Every point on the contour plot corresponds to a specific pair of (w, b) values, which in turn defines a unique straight line f(x).


	A point far from the center of the contour plot represents a high cost. The corresponding line f(x) will be a poor fit for the training data.

	A point close to the center represents a low cost. The corresponding line f(x) will be a good fit for the data.

	The point at the very center of the ovals is the minimum cost, corresponding to the best possible straight-line fit.








The Goal: Minimizing the Cost

By visualizing these plots, we can see the relationship between our model’s parameters, the quality of its fit, and the resulting cost.

The ultimate goal of a linear regression algorithm is to find an efficient way to automatically find the values of w and b that are at the bottom of this cost function “bowl”. We need an algorithm that can navigate this surface and find the minimum.

In the next chapter, we will learn about gradient descent, a powerful algorithm that does exactly that. It is one of the most important algorithms in all of machine learning, used to train models far more complex than just linear regression.# Chapter Summary: Introduction to Machine Learning

This summary covers the fundamental concepts of Machine Learning (ML), its main types, and the tools you’ll use to practice these concepts.





What is Machine Learning?

Machine learning is a field of study that gives computers the ability to learn without being explicitly programmed. This definition was attributed to Arthur Samuel, who, back in the 1950s, developed a checkers-playing program.

The program learned by playing tens of thousands of games against itself. By observing which board positions led to wins and which led to losses, it learned to identify good and bad positions, eventually becoming a better player than Samuel himself.


Key Takeaway: A core principle of machine learning is that the more opportunities you give a learning algorithm to learn (e.g., more data, more examples), the better it will perform.







Main Types of Machine Learning

The two primary types of machine learning you will learn about are supervised learning and unsupervised learning. While both are crucial, supervised learning is responsible for the vast majority of the economic value created by ML today.


Supervised Learning

Supervised learning is the most common type of machine learning used in real-world applications. Its core idea is to learn a mapping from an input (xx) to an output (yy).

The key characteristic of supervised learning is that the algorithm learns from a dataset that includes the “right answers.” Each input xx in the training data has a corresponding correct output label yy. By studying these x,yx, y pairs, the algorithm learns to produce accurate predictions for new, unseen inputs.

There are two major types of supervised learning:


1. Regression

In a regression problem, the goal is to predict a continuous numerical value. This means the output can be any number within a range, out of infinitely many possibilities.


	Example: Housing Price Prediction

	Input (xx): The size of a house in square feet.

	Output (yy): The market price of the house.

	Given a dataset of house sizes and their corresponding sale prices, a learning algorithm can learn to predict the price of a new house based on its size. The algorithm might do this by fitting a straight line or a more complex curve to the data.








2. Classification

In a classification problem, the goal is to predict a discrete category or class. The output is limited to a small, finite set of possible values.


	Example: Cancer Detection

	Input (xx): Patient data, such as tumor size and the patient’s age.

	Output (yy): A category, such as benign (0) or malignant (1).

	The algorithm learns from a dataset where each tumor has been labeled as either benign or malignant. Given a new patient, the algorithm uses what it learned to find a boundary that separates the two classes and classifies the new tumor.






Classification problems can have: - Multiple inputs: You can use more than one feature (e.g., age and tumor size) to make a prediction. - Multiple output categories: A problem could have more than two outcomes (e.g., predicting cancer type 1, type 2, or benign). The terms output classes and output categories are used interchangeably.






Unsupervised Learning

In unsupervised learning, the algorithm is given data that only has inputs (xx) and no output labels (yy). The goal is not to predict a specific “right answer” but to find interesting patterns or structures within the data itself.


1. Clustering

A clustering algorithm is a type of unsupervised learning that automatically groups similar data points together into different clusters.


	Example: Google News

	A clustering algorithm analyzes hundreds of thousands of news articles and groups related stories together. It identifies clusters by finding articles that mention similar words (e.g., “panda,” “twin,” “zoo”) without being explicitly told to look for those terms.




	Example: Market Segmentation

	Companies can use clustering on customer data to discover distinct market segments. For instance, an online learning platform might find that its users fall into different groups, such as those seeking knowledge, those focused on career development, and those wanting to stay updated on their field.








2. Other Unsupervised Learning Algorithms

Besides clustering, other important types of unsupervised learning include: - Anomaly Detection: Used to identify rare or unusual events, which is critical for applications like financial fraud detection. - Dimensionality Reduction: Compresses a large dataset into a much smaller one while minimizing information loss.







The Importance of Practical Application

Knowing the theory behind learning algorithms is like having a set of tools. However, it is just as, if not more, important to know how to apply those tools effectively. Many experienced teams can spend months on a project without success because they are applying the wrong approach. A key part of your learning journey will be to gain the practical skills to know how to design, build, and deploy serious machine learning systems effectively. # Chapter Summary: Gradient Descent for Linear Regression

This summary covers the gradient descent algorithm, a cornerstone of machine learning used to minimize a cost function. We will explore its mechanics, the role of its parameters, and its specific application to a linear regression model.





Gradient Descent: The Concept

Gradient descent is a powerful algorithm used across machine learning to find the minimum of a function. It’s not just for linear regression but can be applied to train advanced models like neural networks.

The core idea is to start with an initial guess for the model’s parameters (e.g., ww and bb) and iteratively adjust them to reduce the cost, J(w,b)J(w,b).


An Intuitive Analogy: Walking Downhill

Imagine you are standing on a hilly surface, representing the cost function where height is the cost. Your goal is to get to the bottom of a valley (a minimum) as quickly as possible.


	Start Somewhere: You begin at some point on the hill, which corresponds to an initial guess for your parameters ww and bb.

	Look Around: From your current position, you look around 360 degrees to find the direction of the steepest descent—the direction that will take you downhill fastest.

	Take a Step: You take a small “baby step” in that direction.

	Repeat: From your new position, you repeat the process: find the steepest direction downhill and take another step.



By repeatedly taking these steps, you will eventually find yourself at the bottom of a valley, which is a local minimum of the cost function.


Important Note: Depending on your starting point, you might end up in different local minima. However, for the specific case of the squared error cost function used in linear regression, the function is convex (a bowl-shape), meaning it only has one global minimum. Therefore, gradient descent will always converge to the single best solution, provided the learning rate is chosen correctly.








The Gradient Descent Algorithm

The algorithm updates the parameters ww and bb in each step. The update rule is as follows:

w=w−α∂∂wJ(w,b)w = w - \alpha \frac{\partial}{\partial w} J(w,b) b=b−α∂∂bJ(w,b)b = b - \alpha \frac{\partial}{\partial b} J(w,b)

This process is repeated until the algorithm converges, meaning the parameters ww and bb no longer change significantly with each step.


Key Components of the Algorithm


1. The Assignment Operator (=)

In the context of the algorithm, the = sign is an assignment operator, not a statement of truth.


	a = c means to take the value of c and store it in the variable a.

	a = a + 1 means to increment the value of a by one. This is different from a mathematical truth assertion, where a = c would claim that a and c are equal. In programming, a truth assertion is often written as a == c.





2. The Learning Rate (α\alpha)

α\alpha (alpha) is the learning rate. It’s a small positive number (e.g., 0.01) that controls how big of a step you take downhill during each update.


	If α\alpha is too small: Gradient descent will work, but it will be very slow because it’s taking tiny baby steps. It will require many iterations to reach the minimum.

	If α\alpha is too large: Gradient descent can overshoot the minimum and fail to converge, or even diverge, with the cost getting worse at each step.



As gradient descent approaches a local minimum, the derivative term naturally gets smaller. This means the update steps automatically get smaller, even with a fixed learning rate α\alpha. If the algorithm is already at a local minimum, the derivative is zero, and the parameters will not be updated.



3. The Derivative Term (∂∂wJ(w,b)\frac{\partial}{\partial w} J(w,b))

The derivative term, ∂∂wJ(w,b)\frac{\partial}{\partial w} J(w,b), tells you the direction of the step.


	Mathematically, it’s the slope of the tangent line to the cost function at the current point.

	If the slope is positive, the update will decrease ww, moving it to the left on the cost curve towards the minimum.

	If the slope is negative, the update will increase ww, moving it to the right on the cost curve towards the minimum.



In combination, the learning rate α\alpha and the derivative term determine the size and direction of the step to take downhill.




Simultaneous Updates

A critical detail for correct implementation is to perform simultaneous updates for both ww and bb. This means you must calculate the new values for both parameters using their current values before applying any updates.



Correct Implementation (Simultaneous Update)

You compute the updates for both parameters and store them in temporary variables before updating the actual parameters.

tempw=w−∂∂wJ(w,b)temp_w = w - \frac{\partial}{\partial w} J(w,b) tempb=b−∂∂bJ(w,b)temp_b = b - \frac{\partial}{\partial b} J(w,b) w=tempww = temp_w b=tempbb = temp_b



Incorrect Implementation (Non-Simultaneous Update)

Here, ww is updated first, and then this new value of ww is used to calculate the update for bb. This is a different algorithm and is not the standard implementation of gradient descent.

tempw=w−α∂∂wJ(w,b)temp_w = w - \alpha \frac{\partial}{\partial w} J(w,b) w=tempww = temp_w


The value of w has now changed

tempb=b−α∂∂bJ(w,b)temp_b = b - \alpha \frac{\partial}{\partial b} J(w,b) b=tempbb = temp_b







Gradient Descent for Linear Regression

Now, let’s combine gradient descent with the specific cost function for linear regression.


	Model: f_w,b(x(i))=wx(i)+bf\_{w,b}(x^{(i)}) = wx^{(i)} + b

	Cost Function: J(w,b)=12m∑_i=1m(f_w,b(x(i))−y(i))2J(w,b) = \frac{1}{2m} \sum\_{i=1}^{m} (f\_{w,b}(x^{(i)}) - y^{(i)})^2




Derivative Terms for Linear Regression

By applying calculus (which is optional to know), we can find the specific derivative terms for the squared error cost function:

∂∂wJ(w,b)=1m∑i=1m(fw,b(x(i))−y(i))x(i)\frac{\partial}{\partial w} J(w,b) = \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})x^{(i)} ∂∂bJ(w,b)=1m∑i=1m(fw,b(x(i))−y(i))\frac{\partial}{\partial b} J(w,b) = \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})



The Complete Algorithm (“Batch” Gradient Descent)

You repeatedly carry out these simultaneous updates until convergence:

w=w−α1m∑i=1m(fw,b(x(i))−y(i))x(i)w = w - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})x^{(i)} b=b−α1m∑i=1m(fw,b(x(i))−y(i))b = b - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})

This specific version is called Batch Gradient Descent because each step of the algorithm uses the entire batch of training examples (i=1,...,mi=1, ..., m).# Chapter Summary: Enhancing and Evaluating Linear Regression Models

This chapter focuses on practical techniques to significantly improve the performance and reliability of your machine learning models. We will cover three key areas: Feature Scaling, Feature Engineering, and the critical process of setting the Learning Rate to ensure your model’s training process (gradient descent) is both effective and efficient.






Gradient Descent in Practice: Feature Scaling

One of the most impactful techniques for improving the efficiency of gradient descent is feature scaling.


The Problem: Disparate Feature Scales

When features in your dataset have vastly different ranges of values, gradient descent can be inefficient.

Let’s consider predicting house prices using two features: - x1x_1: Size of the house (e.g., 300 to 2000 sq ft) - x2x_2: Number of bedrooms (e.g., 0 to 5)

Here, x1x_1 has a large range of values, while x2x_2 has a small range. This disparity affects the parameters (w1,w2w_1, w_2). A small change in w1w_1 (associated with the large-valued size feature) can cause a massive change in the predicted price and the cost function, JJ. Conversely, the parameter w2w_2 (for bedrooms) requires a much larger change to have a similar impact.

This imbalance results in a cost function with very tall, skinny, and elliptical contour plots. When you run gradient descent on such a cost function, the algorithm can bounce back and forth for a long time, taking a slow, inefficient path to the minimum.



The Solution: Scaling Features

Feature scaling transforms the data so that all features have a comparable range of values. This makes the contour plots of the cost function more circular, allowing gradient descent to find a much more direct and faster path to the global minimum.


Methods for Feature Scaling

There are several common methods to scale your features:


	Scaling by Maximum Value: A simple approach is to divide each feature by its maximum value in the training set.


	For house size (x1x_1): x1,scaled=x12000x_{1,scaled} = \frac{x_1}{2000}

	For bedrooms (x2x_2): x2,scaled=x25x_{2,scaled} = \frac{x_2}{5}




	Mean Normalization: This method centers the feature values around 0. > The formula for mean normalization is: > xi′=xi−μimax(xi)−min(xi)x_i' = \frac{x_i - \mu_i}{max(x_i) - min(x_i)} > - xix_i is the original feature value. > - μi\mu_i is the average (mean) of all values for that feature. > - max(xi)max(x_i) and min(xi)min(x_i) are the maximum and minimum values of the feature.


	Z-score Normalization: This method uses the feature’s mean and standard deviation. > The formula for Z-score normalization is: > xi′=xi−μiσix_i' = \frac{x_i - \mu_i}{\sigma_i} > - xix_i is the original feature value. > - μi\mu_i is the average (mean) of the feature. > - σi\sigma_i is the standard deviation of the feature.





General Guideline: Aim to get features into a range of roughly -1 to +1. However, ranges like -0.3 to +0.3 or -3 to +3 are perfectly acceptable. If a feature’s range is very large (e.g., -100 to +100) or very small (e.g., -0.001 to +0.001), it’s best to rescale it. When in doubt, scale your features; it rarely causes harm and can often help.









Evaluating Gradient Descent: The Learning Curve

To ensure gradient descent is working correctly, you should monitor the cost function, J(w,b)J(w,b), over time. This is done by plotting a learning curve.

A learning curve plots the cost JJ on the vertical axis against the number of iterations of gradient descent on the horizontal axis.


Interpreting the Learning Curve


	Proper Convergence: If gradient descent is working correctly, the cost JJ should decrease after every single iteration. The curve should show a steady downward trend and eventually flatten out. When the curve becomes flat, it means the model has converged, and the parameters are no longer changing significantly.

	Automatic Convergence Test: You can automate the detection of convergence by checking if the decrease in cost per iteration is less than a small number, ϵ\epsilon (e.g., 10−310^{-3}). However, visually inspecting the learning curve is often more insightful for diagnosing issues.





Debugging with the Learning Curve

If the cost JJ increases or oscillates up and down, it’s a clear sign that something is wrong. This usually means the learning rate, α\alpha, is too large. The algorithm is “overshooting” the minimum. To fix this, you should use a smaller learning rate.

If the cost consistently increases, it could be due to a bug in your code. A common mistake is an incorrect implementation of the update rule. - Incorrect: w1:=w1+α∂∂w1J(w,b)w_1 := w_1 + \alpha \frac{\partial}{\partial w_1}J(w,b) - Correct: w1:=w1−α∂∂w1J(w,b)w_1 := w_1 - \alpha \frac{\partial}{\partial w_1}J(w,b)


Debugging Tip: If you suspect a bug, set the learning rate α\alpha to a very small number. If the cost still doesn’t decrease on every iteration, there is likely an error in your code.








Setting the Learning Rate

Choosing the right learning rate, α\alpha, is crucial for training your model effectively.


	If α\alpha is too small: Gradient descent will work, but it will be very slow, requiring many iterations to converge.

	If α\alpha is too large: Gradient descent may fail to converge, with the cost oscillating or even diverging (getting worse and worse).




How to Choose a Good Value for α\alpha

There is no single best value for α\alpha. The ideal approach is to experiment. A good strategy is to try a range of values, increasing them by a factor of roughly 3 each time.

For example, you could try the following values for α\alpha: - …, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, …

For each value, run gradient descent for a small number of iterations and plot the learning curves. - If α\alpha is too large, the cost will increase or fluctuate wildly. - If α\alpha is too small, the cost will decrease, but very slowly.

Choose the value of α\alpha that causes the cost to decrease rapidly and consistently. It’s often best to pick the largest possible value that still works well, or something just slightly smaller than the value that proved to be too large.






Feature Engineering and Polynomial Regression

The features you use have a massive impact on your model’s performance. Feature engineering is the art of creating new, more predictive features by transforming or combining existing ones.


Creating New Features

Imagine you’re predicting house prices with two features: frontage (width of the lot) and depth of the lot. A linear model would be: fw,b(x)=w1x1+w2x2+bf_{w,b}(x) = w_1x_1 + w_2x_2 + b

However, your intuition might suggest that the total area of the land is the most important factor. You can engineer a new feature, x3x_3, by combining the original features: - x3=x1×x2x_3 = x_1 \times x_2 (Area)

Now, your model can learn from frontage, depth, and area, potentially leading to much more accurate predictions.



Fitting Curves: Polynomial Regression

What if your data doesn’t follow a straight line? You can fit non-linear curves to your data using polynomial regression. This is achieved by creating new features that are powers of the original features.

For example, to fit a cubic function to house size data (xx), your model would be: fw,b(x)=w1x+w2x2+w3x3+bf_{w,b}(x) = w_1x + w_2x^2 + w_3x^3 + b

To implement this, you simply create new features from your original size feature: - x1x_1 = size - x2x_2 = size2^2 - x3x_3 = size3^3

Then, you apply the same linear regression algorithm to these new features. You can also try other functions, like the square root, to capture different relationships in the data: fw,b(x)=w1x+w2x+bf_{w,b}(x) = w_1x + w_2\sqrt{x} + b


Important Note: When using polynomial regression, feature scaling becomes critical. If the original feature size ranges from 1 to 1000, then size² ranges from 1 to 1,000,000, and size³ ranges from 1 to 1,000,000,000. These vastly different scales will hinder gradient descent, so scaling them is essential.# From One to Many: Multiple Linear Regression and Vectorization



Welcome! In this chapter, we’ll upgrade our linear regression model to handle multiple input features, making it significantly more powerful. We’ll also uncover a crucial technique called vectorization that will make our code simpler and dramatically faster.






Multiple Linear Regression

So far, we’ve predicted a value y (like a house price) based on a single feature x (like its size). But what if we have more information? A house’s price isn’t just about its size; it’s also affected by the number of bedrooms, the number of floors, and its age. By using multiple features, we can build a more accurate and informative model. This is the core idea behind multiple linear regression.


Notation for Multiple Features

To handle multiple features, we need to update our notation slightly.


	xjx_j: Represents the j-th feature. For example, x1x_1 could be size, x2x_2 the number of bedrooms, and so on.

	nn: The total number of features we are using.

	𝐱(i)\mathbf{x}^{(i)}: A vector (or list of numbers) representing all the feature values for the i-th training example. The bold font or an arrow (x→(i)\vec{x}^{(i)}) emphasizes that this is a vector, not a single number.

	xj(i)x_j^{(i)}: The value of the j-th feature in the i-th training example.



For instance, x3(2)x_3^{(2)} would be the value of the 3rd feature (number of floors) for the 2nd house in our dataset.



The Model for Multiple Features

With multiple features, our model’s formula expands. If we have nn features, the model’s prediction, f𝐰,b(𝐱)f_{\mathbf{w},b}(\mathbf{x}), is calculated as:

f𝐰,b(𝐱)=w1x1+w2x2+w3x3+…+wnxn+bf_{\mathbf{w},b}(\mathbf{x}) = w_1x_1 + w_2x_2 + w_3x_3 + \dots + w_nx_n + b

Here, we have a separate parameter, or weight, wjw_j for each feature xjx_j. The parameter bb remains our bias term.


A More Compact Notation: The Dot Product

Writing out every term can be cumbersome, especially if we have hundreds of features. We can express this formula more elegantly using vector notation.

Let’s group our parameters and features into vectors:


	Parameter Vector, w: 𝐰=[w1,w2,w3,…,wn]\mathbf{w} = [w_1, w_2, w_3, \dots, w_n]

	Feature Vector, x: 𝐱=[x1,x2,x3,…,xn]\mathbf{x} = [x_1, x_2, x_3, \dots, x_n]



Now, we can rewrite the model’s formula using the dot product:

f𝐰,b(𝐱)=𝐰⋅𝐱+bf_{\mathbf{w},b}(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b


The dot product, 𝐰⋅𝐱\mathbf{w} \cdot \mathbf{x}, is simply the sum of the products of the corresponding elements in the two vectors:

𝐰⋅𝐱=w1x1+w2x2+w3x3+…+wnxn\mathbf{w} \cdot \mathbf{x} = w_1x_1 + w_2x_2 + w_3x_3 + \dots + w_nx_n

This compact notation doesn’t just save us typing; it’s the foundation of a powerful implementation technique called vectorization.









The Power of Vectorization

Vectorization is a key idea in machine learning that will make your code shorter and much more efficient. It allows us to take advantage of modern numerical linear algebra libraries, like NumPy in Python, and even specialized hardware like GPUs (Graphics Processing Units).


What is Vectorization?

Vectorization means rewriting our code to perform mathematical operations on entire arrays (or vectors) at once, rather than one element at a time using loops.

It has two distinct benefits:


	Shorter Code: Operations can be expressed in a single, clear line of code.

	Faster Execution: Vectorized code runs significantly faster, especially on large datasets.





Implementation Without Vectorization

Let’s see how we would compute f𝐰,b(𝐱)f_{\mathbf{w},b}(\mathbf{x}) without vectorization.


Method 1: Manual Calculation

For a small number of features, you could write it out manually. This is very inefficient to write and compute if you have many features.

# Inefficient for many features
f = w[0]*x[0] + w[1]*x[1] + w[2]*x[2] # ... and so on
f = f + b




Method 2: Using a For-Loop

A for loop is better than manual calculation, but it is still not considered a vectorized implementation and is computationally inefficient. The computer processes the calculations one by one, in sequence.

# Non-vectorized for-loop
f = 0
for j in range(0, n):
    f = f + w[j] * x[j]
f = f + b





The Vectorized Approach with NumPy

With vectorization, we use a numerical linear algebra library like NumPy to do the heavy lifting. The dot product can be calculated with a single function call: np.dot().

# Vectorized implementation
import numpy as np

f = np.dot(w, x) + b



Isn’t that cool? A single line of code replaces the entire loop and runs much faster.





How Vectorization Achieves Speed 🚀

The “magic” behind vectorization’s speed comes from parallel processing.


	A for loop executes sequentially. It computes w[0]*x[0], then w[1]*x[1], and so on, one step after another.

	A vectorized function (like np.dot()) uses parallel hardware in your computer’s CPU or GPU. It can multiply all pairs of wjw_j and xjx_j at the same time. It then uses specialized hardware to sum the results very efficiently.



This parallel execution is the key to getting learning algorithms to run efficiently and scale to the large datasets common in modern machine learning.






Gradient Descent for Multiple Linear Regression

Now, let’s combine our knowledge of multiple linear regression and vectorization to implement gradient descent.


The Cost Function with Vector Notation

Our cost function, JJ, which we want to minimize, was previously a function of individual parameters w1,…,wnw_1, \dots, w_n and bb. We can now write it more cleanly as a function of the parameter vector 𝐰\mathbf{w} and the number bb:

J(𝐰,b)J(\mathbf{w}, b)



The Gradient Descent Update Rule

The gradient descent algorithm remains the same: we repeatedly update our parameters to take steps “downhill” on the cost function.

The update rules for the parameters are:

wj:=wj−α∂∂wjJ(𝐰,b)for j=1,…,nb:=b−α∂∂bJ(𝐰,b)
\begin{align*}
w_j &:= w_j - \alpha \frac{\partial}{\partial w_j} J(\mathbf{w},b) \quad \text{for } j=1, \dots, n \\
b &:= b - \alpha \frac{\partial}{\partial b} J(\mathbf{w},b)
\end{align*}



	w_jw\_j is the parameter for the j-th feature.

	bb is the bias parameter.

	α\alpha is the learning rate.

	∂∂wjJ(𝐰,b)\frac{\partial}{\partial w_j} J(\mathbf{w},b) is the derivative (or partial derivative) of the cost function with respect to wjw_j.



The derivative term for each w_jw\_j is very similar to the one we had for univariate regression. It involves calculating the error term, (f_𝐰,b(𝐱(i))−y(i))(f\_{\mathbf{w},b}(\mathbf{x}^{(i)}) - y^{(i)}), and multiplying it by the corresponding feature value, xj(i)x_j^{(i)}.



Vectorized Gradient Descent Updates

Instead of writing a loop to update each wjw_j individually, we can update the entire vector 𝐰\mathbf{w} all at once!

Imagine you’ve calculated the derivative for each parameter and stored them in a vector d, where d[j] holds the value of ∂∂wjJ(𝐰,b)\frac{\partial}{\partial w_j} J(\mathbf{w},b).

Without vectorization, you’d use a loop:

# Non-vectorized update
for j in range(n):
w[j] = w[j] - ⍺ * d[j]


With vectorization, the update becomes a single, highly efficient line of code:

# Vectorized update
w = w - ⍺ * d


Behind the scenes, NumPy uses the computer’s parallel hardware to subtract ⍺ * d[j] from each w[j] simultaneously, making the process incredibly fast for thousands or even millions of features.






An Alternative to Gradient Descent

For linear regression specifically, there is another method to find the optimal parameters 𝐰\mathbf{w} and bb.


The Normal Equation

This method, called the normal equation, can solve for 𝐰\mathbf{w} and bb analytically, all in one step, without the need for an iterative algorithm like gradient descent. It uses advanced linear algebra to directly find the values of 𝐰\mathbf{w} and bb that minimize the cost function JJ.



Disadvantages of the Normal Equation

While it sounds great, the normal equation has some significant drawbacks:


	It does not generalize to other learning algorithms, like logistic regression or neural networks.

	It can be very slow if the number of features, nn, is large.




For Your Information: You will almost never need to implement the normal equation yourself. However, it’s good to know it exists. Some machine learning libraries might use it under the hood for linear regression problems. For most learning algorithms you will encounter and implement, gradient descent offers a better and more scalable way to get the job done. $$Of course, here’s a comprehensive chapter summary about logistic regression formatted for a Jupyter Notebook.








Chapter Summary: Logistic Regression for Classification

This chapter introduces classification problems in machine learning, where the goal is to predict a categorical output. We’ll explore why linear regression isn’t suitable for these tasks and dive deep into logistic regression, one of the most widely used classification algorithms today.




Understanding Classification

Classification is a type of supervised learning where the output variable y can only take on a small number of discrete values.


Binary Classification

A common type of classification is binary classification, where there are only two possible outcomes. By convention, these are often represented as 0 and 1.


	Class 0: Often called the negative class, representing “no” or “false.” For example, an email that is not spam.

	Class 1: Often called the positive class, representing “yes” or “true.” For example, a tumor that is malignant.



The terms negative and positive are just labels and don’t inherently mean “bad” or “good.” They simply denote the absence (0) or presence (1) of a certain feature.



Why Linear Regression Fails for Classification

Using linear regression for a classification problem is not a good approach. While you can try to set a threshold (e.g., 0.5) to separate predictions into two classes, the model can be heavily skewed by outliers. Adding a single data point far from the decision boundary can shift the best-fit line, leading to a much worse classification model.






Logistic Regression Model

Logistic regression is a powerful algorithm specifically designed for classification. Its output is always between 0 and 1, making it suitable for interpreting as a probability.


The Sigmoid Function

At the core of logistic regression is the Sigmoid function, also known as the logistic function. It takes any real number z and squashes it into a value between 0 and 1.

The formula for the Sigmoid function, g(z), is: g(z)=11+e−zg(z) = \frac{1}{1 + e^{-z}}


	When z is a large positive number, e−ze^{-z} approaches 0, so g(z)g(z) is close to 1.

	When z is a large negative number, e−ze^{-z} becomes a very large number, so g(z)g(z) is close to 0.

	When z=0z = 0, g(z)=0.5g(z) = 0.5.





Model Representation

The logistic regression model combines the linear function with the sigmoid function in two steps:


	Calculate z, which is a linear combination of the input features x with parameters w and b: z=w→⋅x→+bz = \vec{w} \cdot \vec{x} + b


	Apply the sigmoid function g to z to get the final prediction, fw→,b(x→)f_{\vec{w},b}(\vec{x}): fw→,b(x→)=g(z)=g(w→⋅x→+b)f_{\vec{w},b}(\vec{x}) = g(z) = g(\vec{w} \cdot \vec{x} + b)




Combining these, the full logistic regression model formula is: fw→,b(x→)=11+e−(w→⋅x→+b)f_{\vec{w},b}(\vec{x}) = \frac{1}{1 + e^{-(\vec{w} \cdot \vec{x} + b)}}



Interpreting the Output

The output of the logistic regression model, fw→,b(x→)f_{\vec{w},b}(\vec{x}), is interpreted as the probability that the output label y is 1, given the input x and parameters w and b.


P(y=1 | x; w,b)



For example, if the model outputs 0.7 for a given input, it means there is a 70% chance that the true label is 1. Consequently, the probability of the label being 0 is 30% (since P(y=0) + P(y=1) = 1).






The Decision Boundary

The decision boundary is a crucial concept that helps visualize how a logistic regression model makes its predictions. It is the line or surface that separates the area where y=1 from the area where y=0.


Making Predictions

To make a discrete prediction (0 or 1), we set a threshold on the model’s output. A common threshold is 0.5.


	If fw→,b(x→)≥0.5f_{\vec{w},b}(\vec{x}) \ge 0.5, predict ŷ=1\hat{y} = 1

	If fw→,b(x→)<0.5f_{\vec{w},b}(\vec{x}) < 0.5, predict ŷ=0\hat{y} = 0



Based on the properties of the sigmoid function, this is equivalent to:


	Predict ŷ=1\hat{y} = 1 when z=w→⋅x→+b≥0z = \vec{w} \cdot \vec{x} + b \ge 0

	Predict ŷ=0\hat{y} = 0 when z=w→⋅x→+b<0z = \vec{w} \cdot \vec{x} + b < 0



The decision boundary itself corresponds to the line where z=w→⋅x→+b=0z = \vec{w} \cdot \vec{x} + b = 0.



Linear Decision Boundary

When we use a simple linear model for z, the decision boundary is a straight line.


Example:

Given a model with two features, x1x_1 and x2x_2, the equation for z is: z=w1x1+w2x2+bz = w_1x_1 + w_2x_2 + b

If we have parameters w1=1w_1=1, w2=1w_2=1, and b=−3b=-3, the decision boundary is found by setting z=0z=0: x1+x2−3=0x_1 + x_2 - 3 = 0 or x1+x2=3x_1 + x_2 = 3

This equation defines a straight line. Any point on one side of the line will be classified as 1, and any point on the other side will be classified as 0.




Non-Linear Decision Boundaries

Logistic regression can also learn more complex, non-linear decision boundaries by using polynomial features.


Example:

We can create a more complex model by adding polynomial terms to z. For instance: z=w1x12+w2x22+bz = w_1x_1^2 + w_2x_2^2 + b

If we choose parameters w1=1w_1=1, w2=1w_2=1, and b=−1b=-1, the decision boundary is given by: x12+x22−1=0x_1^2 + x_2^2 - 1 = 0 or x12+x22=1x_1^2 + x_2^2 = 1

This is the equation for a circle with a radius of 1 centered at the origin. Points outside the circle will be predicted as y=1, while points inside will be predicted as y=0.

By adding even higher-order polynomial terms, you can create even more complex decision boundaries, such as ellipses or other intricate shapes, allowing the model to fit very complex datasets.Of course! Here is a comprehensive chapter summary about the cost function for logistic regression, formatted for a Jupyter Notebook and based only on the provided source documents.







Chapter Summary: Cost Function for Logistic Regression

This summary covers why the standard squared error cost function isn’t ideal for logistic regression and introduces a more suitable, convex cost function. We’ll explore the loss function for a single example and then derive the overall cost function for the entire training set.




The Problem with Squared Error for Logistic Regression

When we choose a cost function, our goal is to have a way to measure how well a specific set of parameters, w and b, fits the training data. For linear regression, the squared error cost function works very well.

Recall the squared error cost function from linear regression: J(w,b)=12m∑i=1m(fw,b(x(i))−y(i))2J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2

In linear regression, where fw,b(x)=w⋅x+bf_{w,b}(x) = w \cdot x + b, this cost function is convex—it has a single bowl shape. This property guarantees that gradient descent can find the global minimum.


Non-Convexity in Logistic Regression

However, if we try to use the same squared error cost function for logistic regression, the function fw,b(x)f_{w,b}(x) is the sigmoid function: fw,b(x)=11+e−(w⋅x+b)f_{w,b}(x) = \frac{1}{1 + e^{-(w \cdot x + b)}}

Plugging this into the squared error formula results in a non-convex function. This means the cost function graph has multiple “dips” or local minima. If we use gradient descent on a non-convex function, it might get stuck in a local minimum and fail to find the best possible parameters.

Because of this, the squared error cost function is not a good choice for logistic regression.






A Better Cost Function for Logistic Regression

To solve this problem, we need a different cost function that is convex for logistic regression. We’ll build this by first defining a loss function, which measures the error on a single training example. The overall cost function J will then be the average of the loss L over all m training examples in the dataset.


Defining the Loss Function

The loss function we use for logistic regression is defined in two parts, depending on the value of the true label y, which can only be 0 or 1.

The loss L(f(x),y)L(f(x), y) is defined as: - If y=1y=1: L(f(x),y)=−log⁡(f(x))L(f(x), y) = -\log(f(x)) - If y=0y=0: L(f(x),y)=−log⁡(1−f(x))L(f(x), y) = -\log(1 - f(x))

Let’s understand the intuition behind this.


Case 1: True label is 1 (y=1)

When y=1, the loss is −log⁡(f(x))-\log(f(x)). - The output of logistic regression, f(x)f(x), is always between 0 and 1. - If the model predicts f(x)f(x) close to 1 (the correct answer), the loss is very small (close to 0). - If the model predicts f(x)f(x) close to 0 (a very wrong answer), the term −log⁡(f(x))-\log(f(x)) becomes very large, penalizing the model with a high loss. This incentivizes the algorithm to predict values closer to 1.



Case 2: True label is 0 (y=0)

When y=0, the loss is −log⁡(1−f(x))-\log(1 - f(x)). - If the model predicts f(x)f(x) close to 0 (the correct answer), the term 1−f(x)1 - f(x) is close to 1, and the loss −log⁡(1−f(x))-\log(1 - f(x)) is very small. - If the model predicts f(x)f(x) close to 1 (a very wrong answer), the term 1−f(x)1 - f(x) is close to 0, and the loss becomes very large, approaching infinity. This penalizes the model heavily for being confident in the wrong prediction.







Simplifying the Loss Function

Having two separate equations for the loss function is cumbersome. Fortunately, we can combine them into a single, equivalent equation.

The simplified loss function is: L(f(x),y)=−ylog⁡(f(x))−(1−y)log⁡(1−f(x))L(f(x), y) = -y \log(f(x)) - (1-y) \log(1-f(x))

Let’s see why this works: - If y = 1: The equation becomes L=−1⋅log⁡(f(x))−(1−1)⋅log⁡(1−f(x))L = -1 \cdot \log(f(x)) - (1-1) \cdot \log(1-f(x)). The second term becomes zero, leaving us with L=−log⁡(f(x))L = -\log(f(x)), which is the correct formula for y=1. - If y = 0: The equation becomes L=−0⋅log⁡(f(x))−(1−0)⋅log⁡(1−f(x))L = -0 \cdot \log(f(x)) - (1-0) \cdot \log(1-f(x)). The first term becomes zero, leaving us with L=−log⁡(1−f(x))L = -\log(1-f(x)), which is the correct formula for y=0.

This single, elegant equation gives us a simpler way to write the loss for any training example.





From Loss to Cost: The Logistic Regression Cost Function

Now that we have a simplified loss function, we can define the overall cost function J(w,b) for our logistic regression model. The cost is simply the average of the loss across all m training examples.

The cost function J(w,b) is: J(w,b)=1m∑i=1mL(fw,b(x(i)),y(i))J(w,b) = \frac{1}{m} \sum_{i=1}^{m} L(f_{w,b}(x^{(i)}), y^{(i)})

By substituting our simplified loss function, we get the final cost function that is used to train logistic regression models:

J(w,b)=−1m∑i=1m[y(i)log⁡(fw,b(x(i)))+(1−y(i))log⁡(1−fw,b(x(i)))]J(w,b) = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \log(f_{w,b}(x^{(i)})) + (1-y^{(i)}) \log(1-f_{w,b}(x^{(i)}))]


Why This Cost Function?

This particular cost function is chosen for two main reasons: 1. It is derived from a statistical principle called maximum likelihood estimation, which provides a strong theoretical justification for its use. 2. It has the crucial property of being convex. This means it has a single global minimum and no other local minima, which guarantees that gradient descent can reliably find the optimal parameters for the model.

With this simplified and convex cost function, we are now ready to apply gradient descent to find the best parameters w and b for our logistic regression model. The better the parameters fit the data, the lower the resulting cost will be.# Chapter Summary: Gradient Descent for Logistic Regression

This summary covers the core concepts of implementing gradient descent to train a logistic regression model. We’ll explore how to find the optimal parameters, the specific mathematical formulas involved, and key differences from linear regression.






Finding the Right Parameters

The primary goal of training a logistic regression model is to find the best values for the parameters w and b. These parameters are chosen to minimize the cost function, denoted as J(𝐰,b)J(\mathbf{w}, b). The most common and effective algorithm we use for this minimization task is gradient descent.

Once the model is trained, you can give it a new input, x (like a patient’s tumor size and age), and it will estimate the probability that the output label y is 1.





The Gradient Descent Algorithm

Gradient descent is an iterative optimization algorithm used to find the minimum of a function. For logistic regression, we use it to minimize our cost function J(𝐰,b)J(\mathbf{w},b).


The Update Rule

The algorithm repeatedly updates each parameter by taking a step in the direction of the steepest descent of the cost function. The size of this step is controlled by the learning rate, α\alpha.

The general update rule for each parameter is as follows: repeat{\text{repeat} \{ wj:=wj−α∂J(𝐰,b)∂wj\quad w_j := w_j - \alpha \frac{\partial J(\mathbf{w},b)}{\partial w_j} b:=b−α∂J(𝐰,b)∂b\quad b := b - \alpha \frac{\partial J(\mathbf{w},b)}{\partial b} }\}


Important Note: These updates must be performed simultaneously. You should calculate the new values for all parameters on the right-hand side first and then update the parameters w_j and b all at once.








Gradient Descent for Logistic Regression

To apply the update rule, we need the specific derivatives (the gradient) of the logistic regression cost function.


Derivative with respect to w_j

The derivative of the cost function JJ with respect to a single weight parameter wjw_j is calculated as:

∂J(𝐰,b)∂wj=1m∑i=1m(f𝐰,b(𝐱(i))−y(i))xj(i)\frac{\partial J(\mathbf{w},b)}{\partial w_j} = \frac{1}{m} \sum_{i=1}^{m} (f_{\mathbf{w},b}(\mathbf{x}^{(i)}) - y^{(i)})x_j^{(i)}

Variable Definitions: - mm: The total number of training examples. - f𝐰,b(𝐱(i))f_{\mathbf{w},b}(\mathbf{x}^{(i)}): The model’s prediction for the ithi^{th} training example. - y(i)y^{(i)}: The actual label for the ithi^{th} training example. - xj(i)x_j^{(i)}: The value of the jthj^{th} feature for the ithi^{th} training example. - jj: The index of the feature, from 1 to nn (where nn is the total number of features).



Derivative with respect to b

The derivative with respect to the bias parameter b is very similar but lacks the xj(i)x_j^{(i)} term at the end:

∂J(𝐰,b)∂b=1m∑i=1m(f𝐰,b(𝐱(i))−y(i))\frac{\partial J(\mathbf{w},b)}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} (f_{\mathbf{w},b}(\mathbf{x}^{(i)}) - y^{(i)})






Logistic vs. Linear Regression: A Tale of Two Algorithms

You might notice that the update rules for gradient descent look identical to the ones used for linear regression. This is a crucial point of potential confusion.

The two algorithms are not the same. The difference lies in the definition of the function f𝐰,b(𝐱)f_{\mathbf{w},b}(\mathbf{x}):


	In Linear Regression, the prediction is a linear function: f𝐰,b(𝐱)=𝐰⋅𝐱+bf_{\mathbf{w},b}(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b


	In Logistic Regression, the prediction is the output of the sigmoid function applied to a linear combination of the inputs: f𝐰,b(𝐱)=g(𝐰⋅𝐱+b)f_{\mathbf{w},b}(\mathbf{x}) = g(\mathbf{w} \cdot \mathbf{x} + b)




This fundamental change in the model’s prediction function makes them two very different algorithms, even though the structure of the gradient descent update looks the same.





Practical Implementation and Further Learning


Key Implementation Details

To ensure your gradient descent implementation runs correctly and efficiently, keep the following in mind: - Monitoring Convergence: Just as with linear regression, you can monitor the cost function J(𝐰,b)J(\mathbf{w},b) at each iteration to ensure it is decreasing and converging. - Feature Scaling: If your input features have very different ranges of values (e.g., one from 0-1000 and another from 0-1), gradient descent can be slow. Scaling all features to a similar range, like -1 to +1, can help gradient descent converge much faster. - Vectorization: The update rules can be implemented much more efficiently using vectorization, which allows you to update all w parameters at once without an explicit for loop. This can significantly speed up your code.



Hands-on Labs and scikit-learn

To solidify your understanding, the upcoming optional labs will be very useful. - You will see how the gradient is calculated in code, which will prepare you for the practice lab. - Animated plots will show gradient descent in action, visualizing the cost function and learning curve. - A very practical lab will show you how to train a logistic regression model using the popular scikit-learn library, a tool used regularly by many machine learning practitioners.

You now have the foundational knowledge to implement logistic regression, a powerful and widely used learning algorithm. Congratulations!# Chapter Summary: Overfitting and Regularization

This summary covers the concepts of overfitting and underfitting, and introduces regularization as a key technique to improve model performance.






The Problem of Overfitting and Underfitting

When training a machine learning model, it’s possible for the algorithm to perform poorly. This can often be attributed to two common problems: overfitting and underfitting.


Defining Underfitting and Overfitting

Let’s use a housing price prediction example to understand these concepts.


Underfitting (High Bias)

If we fit a simple linear function to a dataset where the relationship between house size and price is clearly non-linear, the model fails to capture the underlying trend in the data.


	Underfitting: The model does not fit the training data well.

	High Bias: This is another term for underfitting. It’s as if the model has a strong, preconceived notion (a “bias”) that the data must be linear, causing it to perform poorly when the data is not.



This results in a model that is too simple and has poor predictive performance on both the training data and new, unseen data.



Overfitting (High Variance)

In contrast, if we fit a very complex, high-order polynomial function to the data, the model might pass through every single training point perfectly.


	Overfitting: The model fits the training data too well. It captures not only the underlying trend but also the noise and random fluctuations in the training set.

	High Variance: This is another term for overfitting. The model is highly sensitive to the specific training data; a slightly different training set could result in a completely different model, leading to “highly variable” predictions.



While the model appears perfect on the training data (its cost function might be zero), it is often a very “wiggly” curve that fails to generalize well to new, unseen examples. Generalization refers to the model’s ability to make accurate predictions on data it has not been trained on.



The “Just Right” Model

The goal is to find a model that is somewhere in between these two extremes. A model that is complex enough to capture the true underlying pattern of the data but not so complex that it overfits. This is the “just right” model that balances bias and variance.











	Model State
	Description
	Performance on Training Data
	Generalization to New Data
	Also Known As





	Underfit
	Too simple, fails to capture data trend.
	Poor
	Poor
	High Bias



	“Just Right”
	Captures the underlying data trend well.
	Good
	Good
	-



	Overfit
	Too complex, fits noise in the data.
	Excellent (or perfect)
	Poor
	High Variance








Overfitting in Classification

Overfitting is not unique to regression. In a classification task, such as determining if a tumor is malignant or benign, a simple linear decision boundary might underfit the data. Conversely, a very high-order polynomial decision boundary might perfectly separate all the training examples but create an overly complex, contorted boundary that would not generalize well to new patients. This would be a case of overfitting.






Addressing Overfitting

When you detect that your model is overfitting, there are several strategies you can employ to address the issue.


1. Collect More Training Data

This is often the most effective tool against overfitting. If you provide a learning algorithm with more training examples, it can better learn the true underlying patterns and is less likely to be misled by noise in a small dataset. While highly effective, acquiring more data is not always possible.



2. Use Fewer Features (Feature Selection)

If your model uses a large number of features (e.g., a high-order polynomial), it has a higher risk of overfitting. You can manually select a smaller subset of the most relevant features to build a simpler model. An upcoming course will cover algorithms that can automatically select the most appropriate features. The main disadvantage is that you might be throwing away useful information by discarding features.



3. Regularization

Regularization is a technique that keeps all the features but reduces the magnitude of the parameter values (w_jw\_j). This helps prevent any single feature from having an overly large effect, which can lead to a “smoother” and simpler model that is less prone to overfitting.


	How it works: Regularization encourages the learning algorithm to shrink the values of the parameters. It does this without setting them to exactly zero (which would be the same as eliminating the feature).

	Convention: Typically, only the weight parameters (w1,...,wnw_1, ..., w_n) are regularized. The bias parameter, bb, is often left unregularized, as in practice this makes very little difference.



I use regularization all the time; it is a very useful and common technique for training learning algorithms.






Regularization in Detail

Regularization works by modifying the cost function, adding a penalty for large parameter values.


The Regularized Cost Function

To implement regularization, we add a new term to our original cost function. Let’s look at the example of linear regression.

The original cost function is: J(𝐰,b)=12m∑i=1m(f𝐰,b(𝐱(i))−y(i))2J(\mathbf{w}, b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{\mathbf{w},b}(\mathbf{x}^{(i)}) - y^{(i)})^2

The regularized cost function adds a penalty term: J(𝐰,b)=12m∑i=1m(f𝐰,b(𝐱(i))−y(i))2+λ2m∑j=1nwj2J(\mathbf{w}, b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{\mathbf{w},b}(\mathbf{x}^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2

This new cost function balances two objectives:


	Fit the training data well: This is handled by the first term, the original mean squared error.

	Keep the parameters small: This is handled by the second term, called the regularization term, which penalizes large values of wjw_j.




The Regularization Parameter (λ\lambda)

The regularization parameter, λ\lambda (lambda), is a positive number that you choose. It controls the trade-off between the two objectives.


	If λ\lambda is set to 0: This is equivalent to no regularization. The model is likely to overfit.

	If λ\lambda is very large: The algorithm will be heavily penalized for any non-zero wjw_j values. To minimize the cost, it will make the parameters wjw_j very close to zero. This results in a model that is too simple (e.g., f(x)≈bf(x) \approx b) and will underfit the data.

	If λ\lambda is “just right”: A well-chosen, intermediate value for λ\lambda will appropriately balance the two goals, leading to a model that fits the data well and generalizes better.






Regularized Linear Regression

To train a regularized linear regression model, we use gradient descent with the new, regularized cost function.

The update rules for the parameters in gradient descent are as follows:

Repeat

{

wj:=wj−α∂J(𝐰,b)∂wjb:=b−α∂J(𝐰,b)∂b
\begin{align*}
w_j &:= w_j - \alpha \frac{\partial J(\mathbf{w},b)}{\partial w_j} \\
b &:= b - \alpha \frac{\partial J(\mathbf{w},b)}{\partial b}
\end{align*}


}

With regularization, the partial derivatives change.

The update for wjw_j becomes: wj:=wj−α[1m∑i=1m(f𝐰,b(𝐱(i))−y(i))xj(i)+λmwj]w_j := w_j - \alpha \left[ \frac{1}{m} \sum_{i=1}^{m} (f_{\mathbf{w},b}(\mathbf{x}^{(i)}) - y^{(i)})x_j^{(i)} + \frac{\lambda}{m} w_j \right]

The update for bb remains unchanged because we do not regularize bb: b:=b−α[1m∑i=1m(f𝐰,b(𝐱(i))−y(i))]b := b - \alpha \left[ \frac{1}{m} \sum_{i=1}^{m} (f_{\mathbf{w},b}(\mathbf{x}^{(i)}) - y^{(i)}) \right]


Note: Remember to perform simultaneous updates for all parameters (w1,...,wn,bw_1, ..., w_n, b).




Intuition Behind the Update

We can rewrite the update rule for wjw_j to better understand what’s happening: wj:=wj(1−αλm)−α1m∑i=1m(f𝐰,b(𝐱(i))−y(i))xj(i)w_j := w_j \left(1 - \alpha \frac{\lambda}{m}\right) - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{\mathbf{w},b}(\mathbf{x}^{(i)}) - y^{(i)})x_j^{(i)}


	The term (1−αλm)(1 - \alpha \frac{\lambda}{m}) is a number slightly less than 1. On every iteration, it multiplies w_jw\_j by this value, thus shrinking the parameter wjw_j a little bit.

	The second part of the equation is the original update step from unregularized linear regression.



So, regularization adds a “shrinking” effect to the parameters on each step of gradient descent.






Regularized Logistic Regression

Regularization can be applied to logistic regression in a very similar way to prevent overfitting in classification tasks.


The Cost Function

The cost function for logistic regression is modified by adding the same regularization term.

The regularized cost function for logistic regression is: J(𝐰,b)=−1m∑i=1m[y(i)log(f𝐰,b(𝐱(i)))+(1−y(i))log(1−f𝐰,b(𝐱(i)))]+λ2m∑j=1nwj2J(\mathbf{w}, b) = -\frac{1}{m} \sum_{i=1}^{m} \left[ y^{(i)} \log(f_{\mathbf{w},b}(\mathbf{x}^{(i)})) + (1-y^{(i)}) \log(1-f_{\mathbf{w},b}(\mathbf{x}^{(i)})) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2

Here, f𝐰,b(𝐱)f_{\mathbf{w},b}(\mathbf{x}) is the sigmoid function. By minimizing this new cost function, the algorithm penalizes large parameter values, preventing the decision boundary from becoming overly complex.



Gradient Descent for Regularized Logistic Regression

The gradient descent algorithm looks surprisingly similar to the one for regularized linear regression. The updates are performed simultaneously for wjw_j and bb.

The update for wjw_j is: wj:=wj−α[1m∑i=1m(f𝐰,b(𝐱(i))−y(i))xj(i)+λmwj]w_j := w_j - \alpha \left[ \frac{1}{m} \sum_{i=1}^{m} (f_{\mathbf{w},b}(\mathbf{x}^{(i)}) - y^{(i)})x_j^{(i)} + \frac{\lambda}{m} w_j \right]

The update for bb is: b:=b−α[1m∑i=1m(f𝐰,b(𝐱(i))−y(i))]b := b - \alpha \left[ \frac{1}{m} \sum_{i=1}^{m} (f_{\mathbf{w},b}(\mathbf{x}^{(i)}) - y^{(i)}) \right]


Key Insight: These update equations are exactly the same as for regularized linear regression. The only difference is that the definition of the model f𝐰,b(𝐱)f_{\mathbf{w},b}(\mathbf{x}) is now the logistic (sigmoid) function, not a linear function. $$







EPUB/nav.xhtml

Unsupervised Machine Learning

		Unsupervised Machine Learning

		Chapter Summary: Cost Function Intuition		The Cost Function: A Deeper Dive		The Role of Parameters: w and b

		Formulating the Cost Function





		Visualizing the Cost Function		A Simplified Model: Fixing b = 0

		The Full Model: Visualizing J(w, b)

		Connecting Plots: Model Fit and Cost





		The Goal: Minimizing the Cost

		What is Machine Learning?

		Main Types of Machine Learning		Supervised Learning

		Unsupervised Learning





		The Importance of Practical Application

		Gradient Descent: The Concept		An Intuitive Analogy: Walking Downhill





		The Gradient Descent Algorithm		Key Components of the Algorithm

		Simultaneous Updates

		Correct Implementation (Simultaneous Update)

		Incorrect Implementation (Non-Simultaneous Update)





		Gradient Descent for Linear Regression		Derivative Terms for Linear Regression

		The Complete Algorithm (“Batch” Gradient Descent)





		Gradient Descent in Practice: Feature Scaling		The Problem: Disparate Feature Scales

		The Solution: Scaling Features





		Evaluating Gradient Descent: The Learning Curve		Interpreting the Learning Curve

		Debugging with the Learning Curve





		Setting the Learning Rate		How to Choose a Good Value for α\alpha





		Feature Engineering and Polynomial Regression		Creating New Features

		Fitting Curves: Polynomial Regression





		Multiple Linear Regression		Notation for Multiple Features

		The Model for Multiple Features





		The Power of Vectorization		What is Vectorization?

		Implementation Without Vectorization

		The Vectorized Approach with NumPy

		How Vectorization Achieves Speed 🚀





		Gradient Descent for Multiple Linear Regression		The Cost Function with Vector Notation

		The Gradient Descent Update Rule

		Vectorized Gradient Descent Updates





		An Alternative to Gradient Descent		The Normal Equation

		Disadvantages of the Normal Equation









		Chapter Summary: Logistic Regression for Classification		Understanding Classification		Binary Classification

		Why Linear Regression Fails for Classification





		Logistic Regression Model		The Sigmoid Function

		Model Representation

		Interpreting the Output





		The Decision Boundary		Making Predictions

		Linear Decision Boundary

		Non-Linear Decision Boundaries









		Chapter Summary: Cost Function for Logistic Regression		The Problem with Squared Error for Logistic Regression		Non-Convexity in Logistic Regression





		A Better Cost Function for Logistic Regression		Defining the Loss Function





		Simplifying the Loss Function

		From Loss to Cost: The Logistic Regression Cost Function		Why This Cost Function?





		Finding the Right Parameters

		The Gradient Descent Algorithm		The Update Rule





		Gradient Descent for Logistic Regression		Derivative with respect to w_j

		Derivative with respect to b





		Logistic vs. Linear Regression: A Tale of Two Algorithms

		Practical Implementation and Further Learning		Key Implementation Details

		Hands-on Labs and scikit-learn





		The Problem of Overfitting and Underfitting		Defining Underfitting and Overfitting

		Overfitting in Classification





		Addressing Overfitting		1. Collect More Training Data

		2. Use Fewer Features (Feature Selection)

		3. Regularization





		Regularization in Detail		The Regularized Cost Function

		Regularized Linear Regression

		Regularized Logistic Regression













  
    		
      Title Page
    


    		
      Cover
    


  





EPUB/media/file1.png
Visualizing the Cost: "J(w)"

As we change 'w’, the total error changes. If we plot
the cost 'J' for every possible value of ‘w', we get a
U-shaped curve. The lowest point on this curve is
our goal—it's the value of ‘w’ that best fits the data.
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The minimum of the cost function occurs at ‘w=T',

which corresponds to the perfect fit in our simple
example.
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Starting Simple: Fixing ‘b = 0"
To build our intuition, let's simplify things by setting
the parameter 'b" to zero. Our model is now just “f(x)
= wx', aline forced to pass through the origin. This

means the only thing we can change is the slope,
‘w
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This chart shows how different values of ‘w' (the

slope) create different lines. The red vertical lines

show the "error” between our data points and the
model's prediction.





