4. MODEL SELECTION (HIGH IMPORTANCE - Fourth Priority) (5/5) │ ├── 4.1 Algorithm Selection (5/5) │ │ ├── Supervised Learning Algorithms (5/5) │ │ │ ├── Classification (e.g., Logistic Regression, SVM, Decision Trees, Random Forest, XGBoost) │ │ │ │ ├── sklearn.linear_model │ │ │ │ ├── sklearn.svm │ │ │ │ ├── sklearn.tree │ │ │ │ ├── sklearn.ensemble │ │ │ │ ├── xgboost │ │ │ │ └── ✓ Choosing the right algorithm based on problem type and data characteristics │ │ │ └── Regression (e.g., Linear Regression, Ridge, Lasso, SVR, Gradient Boosting) │ │ │ ├── sklearn.linear_model │ │ │ ├── sklearn.svm │ │ │ ├── sklearn.ensemble │ │ │ └── ✓ Selecting models for continuous target variables │ │ └── Unsupervised Learning Algorithms (4/5) │ │ ├── Clustering (e.g., K-Means, DBSCAN, Hierarchical Clustering) │ │ │ ├── sklearn.cluster │ │ │ └── ✓ Grouping similar data points │ │ └── Dimensionality Reduction (e.g., PCA, t-SNE) │ │ ├── sklearn.decomposition │ │ ├── sklearn.manifold │ │ └── ✓ Reducing feature space for visualization or efficiency │ │ │ ├── 4.2 Hyperparameter Tuning (5/5) │ │ ├── Grid Search (5/5) │ │ │ ├── sklearn.model_selection.GridSearchCV │ │ │ └── ✓ Exhaustive search over a specified parameter grid │ │ ├── Random Search (4/5) │ │ │ ├── sklearn.model_selection.RandomizedSearchCV │ │ │ └── ✓ Random search over parameters from a distribution │ │ ├── Bayesian Optimization (3/5) │ │ │ ├── scikit-optimize │ │ │ ├── hyperopt │ │ │ └── ✓ Uses probabilistic model to find optimal hyperparameters efficiently │ │ └── Automated ML (AutoML) (2/5) │ │ ├── Auto-Sklearn │ │ ├── TPOT │ │ └── ✓ Automates hyperparameter tuning and model selection │ │ │ └── 4.3 Cross-Validation Strategies (5/5) │ ├── K-Fold Cross-Validation (5/5) │ │ ├── sklearn.model_selection.KFold │ │ ├── sklearn.model_selection.cross_val_score │ │ └── ✓ Standard for robust model evaluation, reduces variance │ ├── Stratified K-Fold (5/5) │ │ ├── sklearn.model_selection.StratifiedKFold │ │ └── ✓ Preserves class proportions in each fold, essential for imbalanced data │ ├── Leave-One-Out Cross-Validation (LOOCV) (2/5) │ │ ├── sklearn.model_selection.LeaveOneOut │ │ └── ✓ High computational cost, used for small datasets │ └── Time Series Cross-Validation (3/5) │ ├── sklearn.model_selection.TimeSeriesSplit │ └── ✓ Preserves temporal order, crucial for time series models
← Back to Main Pipeline